| |
| |
| |
Herman Verlinde
Het geheimschrift op de horizon
Over zwarte gaten en snaren
Zwarte gaten bestaan. Een waterdicht bewijs is weliswaar nog niet geleverd, maar astrofysici hebben inmiddels sterke aanwijzingen dat deze wonderbaarlijke objecten op talrijke plaatsen in ons universum aanwezig zijn. De meeste zijn ontstaan doordat een uitgebrande ster onder zijn eigen gewicht bezwijkt en na een kortstondig apocalyptisch gevecht ineenstort en opgesloten raakt in de meest hermetische gevangeniscel die er bestaat: de waarnemingshorizon van een zwart gat. Daar kan zelfs geen lichtstraal uit ontsnappen.
Hoewel hun bestaan pas recent onderkend is, hebben zwarte gaten al een wezenlijke plaats ingenomen in ons collectief bewustzijn. Dit werd vooral duidelijk toen twee jaar geleden, tijdens de nieuwsgolf rond het opstarten van de ‘Large Hadron Collider’, de nieuwste peperdure deeltjesversneller nabij Genève, het tijdelijk gerucht dat dit apparaat mogelijk in staat zou zijn om minuscule zwarte gaten te produceren, onder het algemeen publiek bijna tot wereldwijde paniek leidde.
Deze beangstigende reputatie is grotendeels verdiend. Een zwart gat is de belichaming van het allesvernietigend donker, de leegte van waaruit informatie nooit meer terugkomt, en de horizon waar onze kennis ophoudt. Zelfs theoretische natuurkundigen, die de eigenschappen van zwarte gaten trachten te doorgronden vanuit het veilige perspectief van wiskundige vergelijkingen, hebben er nachtmerries over gehad. Lange tijd leek het simpele feit van hun bestaan voldoende om drie grondpijlers van de moderne natuurkunde - de relativiteitstheorie, de quantummechanica en de thermodynamica - serieus aan het wankelen te brengen. Stephen Hawking, die zijn faam vooral verwierf door zwarte gaten een aantal kostbare geheimen te ontfutselen, stelde zelfs voor dat de natuurwetten hun laatst overgebleven voorspellende kracht zouden moeten prijsgeven.
Wat was het probleem? Zoals de naam al aangeeft, heeft een zwart gat heel weinig uiterlijke kenmerken. Van buiten ziet het eruit als een perfect gladde bol, waarvan grootte en vorm uniek bepaald worden
| |
| |
door slechts drie getallen: massa, rotatiesnelheid en elektrische lading. Dat is alles. Maar je kunt er van alles en nog wat in gooien, en dus op bijna oneindig veel verschillende manieren zo'n gat maken. ‘Dus,’ zo vroeg de Amerikaanse fysicus John Wheeler - dezelfde aan wie zwarte gaten hun passende naam te danken hebben - begin jaren zeventig aan zijn student Jacob Bekenstein: ‘Stel, ik gooi al mijn favoriete leesboeken achter de horizon van een zwart gat. Wat gebeurt er dan met alle informatie die zich in die boeken bevindt? Wordt die vernietigd of op een of andere manier behouden? Zijn twee zwarte gaten met precies dezelfde massa, rotatiesnelheid en lading exact identiek, of kun je, door ze zeer zorgvuldig onder de loep te nemen, hun ontstaansgeschiedenis aflezen?’ Bekenstein kwam met een briljant antwoord, dat (ietwat vrij weergegeven) als volgt luidde: ‘De informatie die in een zwart gat verdwijnt mag niet vernietigd worden, maar moet worden ingeschreven, als via een microscopisch klein geheimschrift, op het oppervlak van de horizon. Om dat geheimschrift te kunnen ontcijferen, moeten echter eerst de wetten van de zwaartekracht en de quantummechanica met elkaar in overeenstemming gebracht worden.’
Dit was een opzienbarende conclusie. De verrassing werd een jaar later nog eens verdubbeld toen Hawking aantoonde dat een zwart gat niet volledig koud is, maar een eindige temperatuur heeft. Voor een gemiddeld zwart gat aan de sterrenhemel is deze temperatuur weliswaar zeer klein, maar omdat ieder warm lichaam straling en deeltjes uitzendt, zijn de gevolgen diepgaand. Het betekent dat het onmogelijke toch mogelijk is: deeltjes kunnen ontsnappen vanachter de horizon van een zwart gat. Na deze ware Houdini-act werd duidelijk dat we aan de rand staan van een nieuwe doorbraak in ons begrip van de fundamentele natuurwetten.
| |
Drie grondpijlers van de fysica
Laten we de drie bovengenoemde pijlers van de fysica wat beter aan u voorstellen.
Einsteins speciale relativiteitstheorie vertelt hoe ruimte en tijd met elkaar samenhangen. Hoewel ze misschien wat uitheems overkomen, zijn de voornaamste slogans ervan welbekend: ‘Niets kan sneller reizen dan het licht.’ ‘Tijd is niet absoluut maar relatief: een ruimtereizende tweelingbroer blijft jonger dan zijn thuisgebleven evenbeeld.’ En: ‘Energie is gelijk aan massa.’ De theorie is met grote precisie getoetst. Nog onlangs bevestigde de ‘Fermi Telescope’, het nieuwe ruimte-instrument dat hoog-energetische lichtstralen afkomstig uit de verste uithoeken van het heelal kan detecteren, dat de speciale relativi- | |
| |
teit geldig blijft tot op de kortst denkbare afstand: de zogenaamde Planck-lengte. Over die Planck-lengte zullen we het straks nog wel meer hebben.
De speciale relativiteit houdt geen rekening met de zwaartekracht. Om die in te passen, moest Einstein zijn theorie uitbreiden tot een meer omvattend raamwerk, de algemene relativiteit. In dit prachtige wiskundig bouwwerk vormen ruimte en tijd een buigzaam geheel, dat als een golvend tapijt ligt uitgespreid. Hierlangs beweegt alles voort volgens precies voorspelbare paden, bepaald vanuit het universele meetkundig en economisch principe: ‘Volg de kortste weg naar je bestemming.’ De kromming van ruimte en tijd mag dan wel wonderlijk klinken, maar het is een vaststaand feit waar zelfs bij het ontwerp van het Global Positioning System, het netwerk van satellieten dat uw TomTom aanstuurt, rekening mee moest worden gehouden.
De algemene relativiteit heerst op lange afstanden. Bijna alle bewegingen om ons heen, van vallende appels tot roterende melkwegstelsels, van de baan van Mercurius tot het uitdijende heelal zelf, worden door deze theorie beschreven. Het voorspelt ook twee opmerkelijke verschijnselen: de oerknal, het gewelddadige begin van de tijd, en het bestaan van zwarte gaten.
In de wereld van het allerkleinste regeert een heel andere theorie: de quantummechanica. Deze theorie werd, na belangrijk voorbereidend werk van grote namen als Planck, Einstein en Bohr, in de jaren twintig ontwikkeld door een frisse jonge garde van fysici, die zonder blikken of blozen alle normen en waarden op de kop zetten. En dat was ook nodig, want de quantumwereld is tegendraads, en vol met ongebruikelijke onzekerheden. Alles fluctueert, en niets is wat het lijkt. Golven zijn deeltjes, en deeltjes zijn golven, die zich tegelijkertijd op twee verschillende plaatsen kunnen bevinden. En nog erger: een centraal principe waarop de hele natuurwetenschap leek te berusten, dat identieke beginsituaties tot dezelfde uitkomst leiden, bleek gewoon onwaar. Ondanks Einsteins verontwaardigd protest (‘God dobbelt niet’) bestaat er inmiddels overtuigend experimenteel bewijs dat toeval en willekeur wel degelijk heersen op de kleinste schaal.
Hoewel het moeite heeft gekost, kan de quantumtheorie goed in overeenstemming gebracht worden met de speciale relativiteit. De eerste stap werd gezet door Dirac, die voorspelde dat het elektron een spiegelbeeld moest hebben, een deeltje met precies dezelfde eigenschappen maar met de tegenovergestelde lading. (Dit anti-deeltje, het positron, vormt inmiddels de ‘P’ in pet-scan, de beeldvormende techniek waarmee al vele levens zijn gered.) Diracs werk werd even briljant vervolgd door Feynman, Schwinger en anderen, en zo ont- | |
| |
stond de quantumelektrodynamica, of qed, de theorie die de wisselwerking tussen elektronen en lichtdeeltjes beschrijft. Weer wat later, mede door bijdragen van onze eigen leermeesters Gerard 't Hooft en Martinus Veltman, kon deze theorie, opgevrolijkt met wat extra kleuren, met succes worden uitgebreid tot een precieze wiskundige beschrijving van de twee kernkrachten: de zwakke en de sterke wisselwerking.
Figuur 1. De inwendige structuur van kerndeeltjes, zoals protonen en neutronen, wordt beschreven door de quantumchromodynamica. Volgens deze theorie is een proton opgebouwd uit drie quarks, ieder met een andere kleur. De quarks zijn aan elkaar gebonden door middel van de sterke kernkracht. Deze wordt overgedragen door gluonen.
De zwakke kernkracht veroorzaakt het splijten van atoomkernen, en is daarmee, ondanks zijn naam, verantwoordelijk voor het verwoestende geweld van atoomwapens. De sterke kernkracht houdt de kerndeeltjes juist bij elkaar, en wordt beschreven door de zogenaamde quantumchromodynamica, of qcd. Volgens deze theorie zijn kerndeeltjes, zoals neutronen en protonen, opgebouwd uit weer kleinere bouwstenen: de quarks en gluonen. Deze deeltjes kunnen zelf niet waargenomen worden, omdat ze altijd binnen een atoomkern gevangen blijven. Maar we kunnen ons er wel een voorstelling van maken hoe ze eruitzien. Ze vormen een bont geheel. Een quark draagt een kleur: rood, groen of blauw. De gluonen, de lijmdeeltjes, dragen twee kleuren, en zijn in staat om de kleur van een quark te veranderen. Op deze manier dragen zij de sterke kernkracht over, die de quarks samenbindt in witgekleurde combinaties. We zullen deze kleurrijke theorie straks op een verrassende plaats opnieuw tegenkomen.
De oudste van de drie genoemde pijlers is de thermodynamica, ontwikkeld in de negentiende eeuw door denkers als Clausius, Max- | |
| |
well en Boltzmann. Dit is de theorie van de grote aantallen en, zoals de naam al aangeeft, van warmteverschijnselen. Het beschrijft hoe energie evenredig verdeeld wordt over de talloze atomen in een gas, vloeistof of vaste stof, en aldus als warmte aanvoelt. Het is ook de theorie van de onwetendheid, en daardoor, op paradoxale wijze, meer fundamenteel dan alle andere theorieën. Want hoewel we steeds meer te weten komen, is er veel meer dat we niet weten dan wel. We weten bijvoorbeeld niet precies waar alle moleculen in een gas zich bevinden en welke kant ze op bewegen. Deze onwetendheid neemt bovendien alsmaar toe: dit is de beroemde tweede hoofdwet van de thermodynamica.
Dit klinkt als een tamelijk onbruikbaar startpunt, maar gelukkig is het in veel situaties mogelijk om onze onwetendheid te kwantificeren en daarmee aan regels te binden. En zoals een beroemd epistemoloog, Donald Rumsfeld, ooit benadrukte: je kan beter te maken hebben met ‘known unknowns’ dan met ‘unknown unknowns’. De mate van onwetendheid gaat onder de naam ‘entropie’. Je kunt de entropie van een systeem beschouwen als de totale hoeveelheid informatie die erin ligt opgeslagen. De kleinste eenheid van informatie is de bekende bit: 0 of 1, ja of nee, kop of munt. Een wat grotere eenheid is zettabyte, oftewel 1021 bytes - dit is een goede schatting van het totaal aan digitale informatie opgeslagen op alle computers in de hele wereld. Dat klinkt als héél veel informatie, maar het komt overeen met de entropie van een zoutkorrel.
Wat maakt de thermodynamica zo fundamenteel? Toen Clausius en anderen hun baanbrekend werk verrichtten was nog niet duidelijk hoe moleculen en atomen in elkaar staken. De periodieke tabel, de lijst van alle bestaande chemische elementen, bestond nog niet. Toch zijn de hoofdwetten van de thermodynamica heden ten dage nog steeds volledig juist en bruikbaar: hun geldigheid is zo algemeen dat ze de gedetailleerde aard en eigenschappen van materie overstijgen, en zelfs in een (denkbeeldig?) ander universum, met een heel andere periodieke tabel, geldig zouden blijven.
| |
Quantumzwaartekracht
Twee van de drie pijlers staan op nogal gespannen voet: de algemene relativiteit en quantummechanica kunnen elkaar niet zo goed uitstaan. Toch moeten ze uiteindelijk samengevoegd worden tot één geheel: de theorie van de quantumzwaartekracht.
Wat is dat, quantumzwaartekracht? De eerste hint voor de noodzaak van zo'n theorie werd al in 1899 gevonden door Max Planck, nog
| |
| |
voordat hij zijn beroemde quantumhypothese formuleerde. Hij beschouwde eerst de volgende twee vragen. ‘Hoe ontstaat een regenboog?’ En: ‘Waarom zijn sommige sterren blauw gekleurd en andere rood?’ De antwoorden hierop waren destijds al goed bekend. De regenboog ontstaat doordat de kleur van een lichtstraal afhangt van zijn golflengte: blauw heeft een kortere golflengte dan rood. Wit licht dat door een regenbui gaat wordt daardoor uiteengereten in licht met afzonderlijke kleuren. En het was ook al eerder vastgesteld dat de kleur van licht afhangt van de temperatuur van de lichtbron: blauwe sterren zijn heter dan rode sterren. Planck combineerde deze twee gegevens op slimme wijze, en leidde af dat de energie van een lichtdeeltje afhangt van zijn golflengte: hoe korter de golflengte, des te hoger de energie. Om deze relatie op te schrijven, voerde hij een nieuwe natuurconstante in: de Planck-constante.
Planck had direct door dat deze nieuwe constante net zo fundamenteel was als drie andere beroemde constanten: de Newton-constante, die de sterkte van de zwaartekracht bepaalt, de lichtsnelheid, en de Boltzmann-constante, die de relatie tussen energie en temperatuur vastlegt. De vier constanten samen stelden hem in staat om een natuurlijk stelsel van eenheden in te voeren, de zogenaamde Planck-eenheden van tijd, lengte, massa en temperatuur. Dit eenhedenstelsel, zo schreef hij, zou noodzakelijk gebruikt moeten worden als je aan een buitenaardse beschaving, ergens in een ander melkwegstelsel, zou moeten uitleggen hoe oud, groot, zwaar en warm je bent. Niemand in het Andromeda-melkwegstelsel weet immers wat centimeters, secondes, kilos en graden zijn.
We kunnen de Planckse eenheden toelichten door middel van een gedachte-experiment, een van Einsteins favoriete bezigheden. We gaan de golflengte van een lichtdeeltje zo kort mogelijk proberen te maken. Het deeltje krijgt dus steeds meer energie. Kunnen we die energie willekeurig groot maken of ontstaat er dan een probleem? Wel, we herinneren ons nog dat ‘energie is massa’. En wat gebeurt er als je steeds meer massa in een steeds kleiner hokje propt? Op een goed moment bezwijkt het lichtdeeltje onder zijn eigen gewicht: het wordt een zwart gat. Het is weliswaar een heel kleintje, zo licht als een zoutkorrel en met een straal gelijk aan de Planck-lengte, zo'n 10-32 cm, maar het is echt een zwart gat. Of misschien toch niet? Alles is immers toch zo vluchtig en onzeker op zo'n ongelofelijk kleine schaal? En, inderdaad, in de quantumwereld zal het zwarte gaatje geen lang leven beschoren zijn: volgens Hawkings formule zal het een temperatuur hebben van zo'n 1032 graden Celsius, en dientengevolge na minder dan 10-43 seconde verdampt zijn.
| |
| |
We heten u van harte welkom in de verwarrende wereld van de quantumzwaartekracht.
| |
Het quantum-zwarte gat
Astronomische zwarte gaten zijn niet minuscuul klein en instabiel, maar enorm zwaar, groot en onverwoestbaar. Waarnemingen tonen aan dat in het dichtbevolkte midden van de meeste melkwegstelsels, inclusief het onze, zich monsterlijk grote zwarte gaten bevinden, die vele miljoenen keer zwaarder zijn dan de zon. Waarom zou zo'n enorm zwart gat zich ook maar iets aantrekken van die storende onzekerheden van de nietige quantumwereld?
Beschouw het als een vorm van gerechtigheid. Een zwart gat probeert de tijd als het ware uit elkaar te rukken: een goedwerkend horloge dat zich op de horizon bevindt, zal van buitenaf stil lijken te staan. Een nanoseconde op de horizon duurt een eeuwigheid voor een buitenstaander; een volledig millennium in onze vaderlandse geschiedenis verstrijkt, wanneer opgemeten door het horloge op de horizon, in minder dan een oogwenk. Deze absurde tijdsvervorming doet denken aan de al even absurde paradox van Zeno. En net als Achilles zich gewonnen moet geven aan de schildpad, moet het zwarte gat zich onderwerpen aan de regels van de wereld van het allersnelste en allerkleinste: de quantumzwaartekracht.
Maar hoe kunnen we erachter komen hoe een perfect gladde zwarte bol, een groot donker niets, er op de allerkleinste schaal uitziet? Daarover kunnen we toch niets te weten komen? Of wel? Hier komt die derde pijler, de thermodynamica, de theorie van de onwetendheid, juist net goed van pas. Het blijkt dat zwarte gaten zich inderdaad gedragen volgens regels die sterke overeenkomst vertonen met de hoofdwetten van de thermodynamica. Net als entropie alleen maar kan toenemen, kan een groot zwart gat alleen maar groter worden, door meer massa te verorberen. Uit deze ogenschijnlijk oppervlakkige overeenkomst kwam uiteindelijk een precieze voorspelling van Bekenstein en Hawking: de entropie van een zwart gat - de totale hoeveelheid aan opgeslokte informatie - moet gelijk zijn aan het oppervlak van de waarnemingshorizon, gemeten in Planckse eenheden. Je kunt je voorstellen dat de horizon is opgedeeld in kleine vierkantjes, ter grootte van de Planck-lengte in het kwadraat, waarbij ieder vierkantje één bit aan informatie draagt. Voor een zwart gat van enkele zonsmassa's komt dit overeen met meer dan 1075 bytes. Dat is heel veel verloren kennis.
| |
| |
Figuur 2. De hoeveelheid informatie die in een zwart gat verdwijnt blijkt evenredig met het oppervlak van de horizon, opgemeten in Planck-eenheden. We kunnen ons voorstellen dat de horizon is opgebouwd uit vele minuscule kleine vierkante cellen, ieder met een oppervlak ter grootte van een Planck-lengte in het kwadraat. Elk van deze microscopische cellen bevat één bit aan informatie.
We hebben het met name aan Gerard 't Hooft en Leonard Susskind te danken dat dit resultaat nu algemeen onderkend wordt als een belangrijke richtlijn. Met vooruitziende blik verhieven zij dit inzicht tot het centrale credo van een wetenschappelijke ommekeer: het holografisch principe. Dit beginsel schrijft voor dat alles wat binnen de horizon van een zwart gat plaatsvindt, en meer algemeen alles wat binnen een willekeurig gesloten oppervlak in onze ruimte plaatsvindt, volledig getrouw op het omliggende oppervlak weergegeven moet kunnen worden, als door middel van een hologram, opgebouwd uit een mysterieus spijkerschrift met minuscule letters ter grootte van de Planck-lengte.
| |
De snaartheorie
Het is de hoogste tijd om de snaartheorie op het toneel toe te laten. Snaartheorie is gebaseerd op de (op het eerste gezicht gewaagde) hypothese dat alle elementaire deeltjes, zoals elektronen, quarks, lichtdeeltjes en gluonen, eruitzien als minuscule snaren, trillende draadjes ter grootte van de Planck-lengte. Uit deze aanname volgt een fascinerende wereld, de snarenwereld, die sterk lijkt op het heelal waarin we ons bevinden. Deze snarenwereld heeft bovendien de uitzonderlijke eigenschap dat de zwaartekracht en quantummechanica het daarin prima met elkaar kunnen vinden.
| |
| |
Snaartheorie werd meer dan veertig jaar geleden, deels bij toeval, ontdekt vanuit een poging om de sterke kernkracht te begrijpen. De aanpak werd tijdelijk gestaakt, omdat er een betere theorie gevonden werd: de quantumchromodynamica, de theorie van gluonen en quarks, die we al eerder besproken hebben. Gerard 't Hooft leidde echter af dat de quantumchromodynamica, op de juiste manier bekeken, er hetzelfde uitziet als een snaartheorie. Hij toonde aan dat gluonen, zoals echte lijmdeeltjes betaamt, de neiging hebben zich aan elkaar te rijgen tot lange snoeren, die de quarks aan elkaar verbinden. Zo ontstaat de sterke kernkracht, die de quarks in het binnenste van de atoomkernen gevangen houdt. Het blijkt bovendien dat zo'n snoer van gluonen zich exact zo gedraagt als de ‘snaar’ in snaartheorie. Het bestaan van snaren kan dus worden afgeleid als een logisch gevolg van de experimenteel bevestigde theorie van de sterke wisselwerking.
Maar de snaartheorie heeft meer ambitie: ze wil in één klap alle natuurkrachten beschrijven. Dit is mogelijk, omdat een snaar in twee gedaantes kan voorkomen: gesloten of open. Gesloten snaren hebben geen uiteinden. Ze hebben een duidelijke rol: zij dragen de zwaartekracht. Ieder object met massa of energie kan gesloten snaren uitzenden of opvangen, en voorwerpen voelen elkaars zwaartekrachtveld door gesloten snaren uit te wisselen. Een heel zwaar object zendt heel veel gesloten snaren uit, en veroorzaakt daarmee een kromming van de ruimte en tijd, net als in Einsteins algemene relativiteitstheorie. Open snaren, daarentegen, hebben twee uiteinden. Zij zijn verantwoordelijk voor alle andere krachten: het elektromagnetisme en de twee kernkrachten.
In 1995 deed de Amerikaanse fysicus Joseph Polchinski een opvallende ontdekking. Hij liet zien dat het mogelijk is om de bewegingsvrijheid van open snaren te beperken: er bestaan zogenaamde ‘D-membranen’, waaraan open snaren als het ware met hun uiteinden zitten vastgezogen. De open snaren kunnen zich dus alleen langs het tweedimensionale membraanoppervlak voortbewegen. Deze D-membranen lijken op het eerste gezicht een gekunsteld stukje speelgoed, maar ze blijken een belangrijke sleutel tot het raadsel van zwarte gaten.
Laten we een groot aantal D-membranen op een stapel leggen. Om ze goed van elkaar te kunnen onderscheiden, geven we iedere membraan een andere kleur. De open snaren moeten dan kleur bekennen: ze moeten ieder twee kleuren kiezen, die aangeven aan welk tweetal membranen ze met hun uiteinden vastgezogen zitten. Het membraanoppervlak ziet er dus uit als een veelkleurige spaghettisoep van open snaren. Het blijkt dat deze gekleurde open snaren zich precies zo
| |
| |
gedragen als gluonen, de lijmdeeltjes. In het bijzonder kunnen ze zich op dezelfde manier aan elkaar rijgen, door hun uiteinden aan elkaar te plakken, en zo een lange snaar vormen. De open snaren mogen zich echter alleen langs het membraanoppervlak verroeren, terwijl normale gluonen vrij in drie dimensies kunnen reizen. Met andere woorden: de open-snaartheorie op een grote stapel D-membranen beschrijft een tweedimensionale versie van de quantumchromodynamica.
Er is echter ook een andere kijk, een duaal perspectief, op dit kleurrijke geheel. Een open snaar kan zich met beide uiteinden aan een andere open snaar vastkoppelen, en zo een gesloten snaar vormen. Zo'n gesloten snaar heeft geen uiteinden, zit dus niet vastgeplakt aan het membraanoppervlak, en kan dus in de vrije ruimte afreizen. D-membranen kunnen op deze manier gesloten snaren uitzenden. Maar gesloten snaren veroorzaken zwaartekracht, en D-membranen hebben dus een massa. Deze massa blijkt bovendien aanzienlijk. Stel nu dat je een heel dikke stapel D-membranen neemt, en die een bolvormig geheel laat vormen, net als de horizon van een zwart gat. En inderdaad, als je de stapel maar dik genoeg maakt, dan zal de totale massadichtheid van deze bol zo enorm groot zijn dat er maar één ding kan gebeuren: het vormt een zwart gat.
Figuur 3. Een stapel van drie gekleurde D-membranen, waarlangs de uiteinden van open snaren zich kunnen bewegen. (Een open snaar met twee uiteinden aan een gekleurde membraan gedraagt zich als een gluon; een snaar met één uiteinde op een gekleurde en de ander op een grijze membraan gedraagt zich als een quark.) Gesloten snaren zitten niet vast aan een D-membraan en kunnen vrij bewegen.
| |
| |
Hoe kan dit? Op de ene manier bekeken (het ‘open-snaar-perspectief’) ziet de dikke stapel D-membranen eruit als een tweedimensionale veelkleurige gluonensoep, en op de andere manier bekeken (het ‘gesloten-snaar-perspectief’) ziet het eruit als een zwart gat. Die twee fysische systemen zijn zo verschillend, die kunnen toch onmogelijk hetzelfde zijn? Of misschien toch? Het was de Argentijnse fysicus Juan Maldacena die de volgende gewaagde uitspraak als eerste durfde te doen: ‘De driedimensionale omgeving van een zwart gat kan precies beschreven worden door middel van de veelkleurige theorie van quarks en gluonen, levend op het tweedimensionale horizonoppervlak.’ Dit is de gevierde AdS/cft-dualiteit, de snaartheoretische realisatie van het holografisch principe van 't Hooft en Susskind.
Wat is dat, een ‘dualiteit’? Strikt genomen is het niet meer dan de aanname dat twee op het eerste gezicht zeer verschillende natuurkundige systemen op een dieper niveau equivalent zijn. Het begint dus met een gok. Deze kan echter op veel manieren getoetst worden, en daarmee langzaam maar zeker tot een zeer nuttig en vertrouwd instrument uitgroeien. De AdS/cft-dualiteit heeft al veel toetsen doorstaan. In het bijzonder bevestigt het de door Bekenstein en Hawking voorspelde waarde voor de entropie van een zwart gat, en geeft het een gedetailleerde invulling van het holografisch principe. Snaartheorie heeft daarmee een indrukwekkend succes geboekt.
Betekent dit nu dat snaartheorie het Planckse geheimschrift heeft gekraakt? Niet echt. Het mysterie is weliswaar verkleind, maar niet opgelost. Snaartheorie geeft ons als het ware het alfabet waarin het geheimschrift is geschreven. Dat is een grote stap vooruit. Maar we kennen de taal en de tekst nog niet. Snaartheorie heeft namelijk nog veel onbekende parameters. Van oorsprong leven de snaren in negen dimensies. Van die negen zien wij er om ons heen slechts drie, de andere zes zijn opgerold in een klein propje, ongeveer ter grootte van de Planck-lengte. Over de vorm van die opgerolde dimensies is niet veel bekend. Maar we weten wel dat er heel veel mogelijke vormen zijn. Bij de laatste telling zijn het er zo ongeveer 101000000 - dat is een 1 met een miljoen nullen. Al deze mogelijkheden tezamen vormen het zogenoemde landschap der snaren. Slechts een heel klein verborgen eilandje in dit enorme landschap zal een heelal beschrijven dat eruitziet als het onze.
We kunnen de situatie vergelijken met ‘De Bibliotheek van Babel’, het bekende verhaal van Jorge Luis Borges. Deze bibliotheek is gevuld met alle mogelijke boeken, getypt in een alfabet van vierentwintig letters. In ieder boek lijken de letters en spaties in willekeurige volgorde te staan. Maar omdat alle mogelijke boeken aanwezig zijn, bevat de bi- | |
| |
bliotheek ook ieder literair kunstwerk dat ooit geschreven is, of ooit geschreven zal worden. Een boek in de bibliotheek kan vergeleken worden met een bepaalde vorm van de opgekrulde dimensies. De snaartheorie geeft ons een Babelse bibliotheek vol aan mogelijke universa. De kunst die we nog niet verstaan is om dat boek te vinden waarin de letters een zinmakend spannend verhaal vormen, dat ons heelal beschrijft. Maar we zijn ervan overtuigd dat dit boek bestaat.
| |
Verschijnende ruimte
Het is duidelijk dat er diepe geheimen achter de horizon van een zwart gat verborgen liggen. Maar door consequent te redeneren, en met hulp van de snaartheorie, is het theoretische fysici gelukt om een klein tipje van de sluier op te lichten. De belangrijkste les die we geleerd hebben is dat alles dat nabij een zwart gat plaatsvindt volledig getrouw weergegeven moet kunnen worden, als via een hologram, in termen van een tweedimensionaal systeem dat zich op de horizon bevindt. Dit is een nogal ingrijpende conclusie: het betekent dat we, vanuit het hologram, de derde dimensie van onze ruimte zomaar tevoorschijn moeten kunnen toveren. De derde ruimtedimensie is ‘verschijnend’.
Dit inzicht is ons opgedrongen doordat we de regels van de zwaartekracht en de quantummechanica met elkaar in overeenstemming willen brengen. Einstein, die de laatste twintig jaar van zijn leven met dezelfde vraag geworsteld heeft, zou deze conclusie zeer waarschijnlijk niet hebben kunnen accepteren. Hij geloofde heilig in de voorspelbare meetkundige wereld van de algemene relativiteit, en deed vele pogingen om de wispelturige quantumwereld tot een schim maken. Maar de quantumregels zijn juist onwrikbaar gebleken, terwijl de driedimensionale meetkundige ruimte steeds meer op een luchtspiegeling begint te lijken.
Dit verhaal heeft verrassende wendingen gemaakt. Waar eerst geen enkele structuur aanwezig leek, daar blijkt nu een belangrijke sleutel te liggen. In plaats van een bodemloze put, waarin al onze kennis verdwijnt, wordt het zwarte gat nu gezien als een steen van Rosetta, die ons zal helpen om het geheimschrift waarmee de diepste natuurwetten geschreven zijn te ontrafelen. Maar zover is het nog niet, en er zullen nog wel nieuwe wendingen in het verschiet liggen. Het raadsel van het zwarte gat zal de theoretische natuurkundigen nog lang slapeloze nachten blijven bezorgen.
|
|