Bouwstoffen voor de geschiedenis der wis- en natuurkundige wetenschappen in de Nederlanden
(1878)–David Bierens de Haan– Auteursrechtvrij
[pagina 123]
| |
BOUWSTOFFEN VOOR DE GESCHIEDENIS der WIS- EN NATUURKUNDIGE WETENSCHAPPEN IN DE NEDERLANDEN. door D. BIERENS DE HAAN. | |
VIII. Ludolph van Ceulen.1. Ludolph van ceulen, van collen of van colen hebben wij reeds ontmoet in het nummer VII der Bouwstoffen, toen er van de quadratuur des cirkels door simon van dee eycke sprake was; thans willen wij nagaan, wat er omtrent dezen, waarlijk niet te verachten, wiskundige bekend is: zijne verdiensten toch zijn slechts al te dikwerf miskend geworden, bij het naschrijven van het oordeel der hoog-duitsche geschiedschrijvers, die met zijne geschriften, zijne methode en zijnen stalen ijver niet genoeg bekend schijnen geweest te zijn. 2. Wat de spelling van zijnen naam betreft, hijzelf, en ook zijne weduwe adriana symonsz, die enkele zijner werken na zijnen dood uitgaf, gebruikten ze alle drie: soms meer dan een in hetzelfde werk. In die dagen was zulks ook niet ongewoon; men gebruikte soms slechts een deel van den naam, of bracht dien in het latijn over, of veranderde dien, zonder veel nauwkeurigheid, - als men slechts meende een min of meer beroemden man juist genoeg te hebben aangewezen, om vergissingen voor te komen. Zijne ouders johannes von cöllen en hester de roode woonden te Hildesheim in Sachsen. Aldaar werd onze ludolph | |
[pagina 124]
| |
geboren, niet in 1539, zooals gewoonlijk wordt aangegeven, maar den 18den Januari 1540. Dit is mij gebleken, bij het zoeken naar de twee schijnbaar verloren decimalen van zijne benadering van het getal π, die men nergens in zijne vroegere of latere werken terugvindt: zij moesten echter op zijn grafzerk uitgebeiteld zijn geweest. Nu wist men, dat ludolph van ceulen in de St. Pieterskerk te Lieden begraven werd, maar zijn grafzerk was aldaar onbekend: slechts bestond er eene overlevering van een grafsteen met een grooten cirkel, daarop uitgebeiteld, doch zonder cijfers. Er waren bij het verbouwen van een gedeelte van die Pieterskerk omstreeks de helft der vorige eeuw, een 29tal grafzerken verwijderd: daaronder konde de door mij gezochte grafzerk zich bevinden. En werkelijk in een beschrijving van Leiden ‘Les delices de Leide van 1712’Ga naar eind1) vond ik op bladz. 67 de beschrijving van dien grafzerk. ‘Epitaphium Belgicum, Latine translatum. | |
[pagina 125]
| |
Later is deze beschrijving ook opgenomen door den heer Mr. k.j.f.c. kneppelhout van sterkenbubg in zijne ‘Gedenkteekenen in de Pieterskerk te Leiden’Ga naar eind2). Van Ceulen gaf onderwijs in wiskundige wetenschappen te Breda, toen te Amsterdam [zie ook den titel van het werkje van Noot (8)] tot 1584; daarna te Delft [zooals blijkt uit den titel van zijne werken, aangehaald onder Noot (10) en (11)] in 1585 en 1586; later te Arnhem, waar hij in 1589 woonde [zie de Voorreden voor het werk ‘Vanden Circkel, Noot (12)] de woorden: ‘Met noch het nood-wendighste der voornoem- || den Regel Cos/ welck ick tot Aernhem op 't Hoff van Gelderlandt Anno 1589 gevon- || den hebbe/ door de hulpe van Godt|’]. Eindelijk trok hij naar Leiden, en aldaar werd hem van de stads-regeering eene goede woning kosteloos aangewezen, om daarin zijne school te houden. Dit volgt toch uit de opdracht van het tweede gedeelte van het werk van Noot (12), waar men leest: ‘maer oock || tot mynen versoucke seer gunstelick toe-ghelaten een bequame Schole: jae soo bequaem || ende ghelegen, dat: indien sulcx met aggreatie, ende believen van u E.VV. soude moghen || gheschieden, ick de reste van mijn leven onder u E.VV. regieringhe, ten dienste van || eenen yeghelicken, dies begerende, in myne beroupinghe gaerne soude employeren ende || voleynden: Nu vvete ick seer vvel dat soo danighe beneficie ende vveldaet by u E.VV. my || (hoe vvel onverdient) seer gunstelick bevvesen, princepalijck onder andere mede vereyscht || groote danckbaerheydt: maer considererende mijne sobere middelen, ende my metende || met mijn eygen mate: Ende daer-beneffens over-leggende 'tgene dese sake vvel soude eys- || schen, soo en bevinde ick in, ofte by my niet, daer mede ick 'tselve in eeniger manieren sou- || de kunnen verschuldighen, ten vvare u E.VV. nae der selver goedertierne ghevvoonte in || plaetse van vergeldinghe, gheliefde t'ontfanghen mijne propeuse hert, ende ten dienste goedtvvillicheydt:’ Dit had plaats gevonden in 1594, en zijne school was eene schermschool, zooals blijkt uit de resolutien van Leiden 9 Juni 1594Ga naar eind3), waarbij hem die school werd toegestaan. Hij geraakte in twist met pieter bailly, die reeds in 1577 uit Antwerpen was overgekomen met zijne vrouw willemtje wolfertsdr van | |
[pagina 126]
| |
noortwijk, zijne drie kinderen anna, antony en neeltje, met zijne zuster jacomine, zijn neef antonie en zijne nicht suzannaGa naar eind4). Deze had reeds schermonderwijs, en sedert 1582 ook onderwijs in het schrijven gegeven. Op een request van van ceulen, Januarij 1602, om zijne school te handhavenGa naar eind5), werd bailly gehoordGa naar eind6), en toen den 25sten Jan. het verzoek van van ceulen toegestaanGa naar eind7). Het was in het jaar 1600 dat maurits eene genieschool te Leiden stichtte en die aan de Akademie verbond. Als lectoren werken daarbij benoemd ludolf van ceulen en symon fransz van der merwen, die in 1596 en 1599 Burgermeester van Leiden was; zooals blijkt uit de voorredens van de werken, aangehaald in de noten (12) en (16). Onze van ceulen vervulde die betrekking tot aan zijnen dood, die tien jaren daarna plaats greep. Die benoeming acht ik belangrijk genoeg, om haar hier mede te deelen: belangrijk, omdat zij een duidelijk inzicht geeft, in hetgeen toen van een ingenieur werd gevorderd: belangrijk ook, omdat zij een helder begrip verraadt omtrent de verbinding van theoretische en praktische lessen. ‘Op te extraords. vergaderinge van de Curateurs ende Burgermm. daer versamelt waren den xe January xvj. c. Mr. johan van banchem, President van den Hogen Raede, Mr. johan de groot, Curateurs, jan ysnoutsz. van der nes, Mr. franck duyck, Mr. ysaack nicolaj, Burgemeesteren. Is verhandelt 'tgeene volgt. Alsoo syne Excelltie Grave Maurits van Nassaw, stadhouder van Holland ende Capiteyn-Generael, tot dienst van den Lande goetgevonden hadde, dat in de Universiteyt alhier soude worden gedoceert in goeder duytsche taele. Die Telkonsten ende Landmeten principalyken tot bevorderinge van den geenen, die hen souden willen begeeven tottet Ingenieurschap ende te dien fyne doen recommandeeren hadde de Persoonen van Mr. simon fransz. van der merwen ende Mr. ludolff van ceulen, die de voorsz. Consten zouden mogen opentlyck leeren, ende daer na oock demonstreeren, soo wel in 't groot als in 't cleyn, alles volgens de instructie die zyne Excelltie daer toe hadde doen contipieeren ende door Mr. simon stevin overgesonden aan de Curateurs van de Universiteyt gelijk deselve Instructie hier naer van woort tot woort geinsereert is. | |
[pagina 127]
| |
Syne Excelltie heeft tot dienste van den Lande ende bevorderinge der geenre, die hun tot oeffeninge van het Ingenieurschap sullen begeven, oirbaer verstaen seekere ordre gevolgt te werden in de leeringe, die men daar af in de Academie tot Leyden doen sal, als volgt. Die meyninge is dat men den Toehoorders zoo haest als mogelyck is, sal brengen om metter Daad het Land als Ingenieur te connen dienen, hier toe sal men leeren de Aritmethicque ofte het tellen ende het Landmeeten, maer alleenlijck van elk zooveel als tottet dadelyk gemeene Ingenieurschap nodig is. Die soo verre gecoomen zijn, hebbense als dan lust die diepzinnige dingen grondelycker te ondersoecken, dat sullen sy mogen doen. Dit is van de saecke in 't gemeen geseyt, waer aff breeder verclaringe gedaen werd, als volgt. In de telling sullen geleert worden die vier specien, in geheel getal, in gebrooken getal, ende in 't thiende tal, mitsgaders den Regel van drien in elck der selver getalen. In de voorsz. telling wel vast ende zeeker ervaren synde, sy connen genoeg tellen tottet geene in de gemene Ingenieurschap nodig is. Ende sullen coomen aen 't landmeeten op 't papier lantmetersche wyze, waer by te verstaen is, dat men niet en sal leeren door eenige gegeeven Linien, andere Linien vinden, maer alleenlyck deur gemeete Linien, mette cleyne Voetmaet, het inhout van 't plat te vinden gebruykende daer toe Reekeninge der thiende. het meeten des ronts mette gedeelten van dien aengaende voorts het vlack des Cloots de forme genaemt ellipsis, parabola, hyperbole ende diergelyke, dat en is hier niet nodig, wantet den Ingenieurs seer selden te vooren comt sulcke meetinge te moeten doen: maer alleenlyck sallenze leeren met regtzienige platten, daer na cromzienige, lantmetersche wyse, meetende alsoo een plat deur verscheyde verdeelinge, als in driehoeken oft ander platten om te zien hoe 't een besluyt mettet ander overcompt. Daer na sal volgen het meeten op het papier van Dycken, wallen ende eerdewercken, te weeten, hoe veel schachten oft voeten een voorgestelde wal oft hoop eerden in heeft. In 't meten op 't Papier also genoeg ervaren wesende ende | |
[pagina 128]
| |
deur 't cleyn verstaende watter in 't groot moet gedaen syn: soo sal men coomen totte dadelyke lantmetinge in 't veld heen wyzende hoe men in plaats van regel passer ende winkelhoek op 't Papier ander gereetschap op 't veldt gebruykt, strekkende nogtans tot diergelycken eynde. Sullen ook dadelijk leeren moeten de hoogde ende breete van wallen mettet Lighaemelyck inhout van dien, als hoe veel schachten oft voeten eerden daer in begreepen syn. Daer na sullense leeren op 't Papier teeckenen den omtreck der Landen diese alsoo gemeeten hebben, ende wederom verkeert een plat op 't Papier gegeeven synde 't selve niet aanwysende baecken op 't veldt te teekenen. hier in genoeg ervaren wesende, sullen bequaem sijn om tot de fortificatie ofte sterckt bouwinge te coomen, waer toe bereyt sullen worden houten ofte eerden botsen van Schantsen ende Bolwercken, ende daer mede geleert hebbende die eygen naemen, so sal het trecken van plannen ofte grontteyckeningen van steden heur lieden licht vallen, 'twelck men hun aen steden oock dadelyck sal doen te werck stellen. Sy sullen ook teekenen op 't Papier den omtreck van Schantsen, ofte Steeden met vier, vyff ofte meer Bolwercken waer af men als dan hen lieden de maeten sal geeven, ende snllen daer na sulcke sterckten op 't velt tekenen met baecken. Dus verre gecoomen synde sullen moogen in de zomer trecken na 't leger of ter plaetsen daer sterckten gebouwt werden, 't welck den geenen best geleegen sal syn, die als soldaten in dienst wesende, dan te velde moeten coomen, ende sien daer die saecke zelfs, so helpen die metter daet bevorderen. Ende daer toe gecoomen wesende, datze 't landt alsoo oorbaeren dienst connen doen, sullen henlieden, die willen, des winters tot Leyden mogen oeffenen, als vooren geseyt is in diepzinniger Stoffen, die daer geleert sullen worden, om tot alle saecken den Ingenieurs ontmoetende nog vaster ende volcomelycker voorzien te wesen. De Lessen van Telling ende Meeting op papier sullen een half uyre lang gedaen werden in 't gemeen, 't ander half uyre sal volbracht worden met elcken in 't bizonder te beantwoorden ende onderwysen van 'tgeene sy vraegen ende uytte gemeene lessen niet verstaen en hebben. | |
[pagina 129]
| |
Ende want de geene die dadelyck met Ingenieurs handel omgaen, met malcander geen latyn en spreecken oft immers seer selden, maer dat men in elck lant des landts spraecke gebruyckt. Soo en sullen deese Lessen niet in 't latyn, franchoys oft ander Talen gedaen werden, maer alleenlyck in 't duytsch. Men verstaet oock, dat alle diegeene die tottet leeren deser const van Ingenieurs schap toe gelaeten worde, eerst sullen belooven ende sweeren aen den Viant deeser Landen daer mede geenen dienst te doen. Actum den ixen January xvj hondert, ende was onderteykent Maurice de Nassou. Soo is 't dat Curateurs van de Universiteyt ende Burgemeesteren voornoemt om te bevorderen die begeerte van syne Excelltie daer toe hebben versocht ende bewillicht de voorsz. van der merwen ende van ceulen. Te weeten: Also syn Excelltie ten dienste van den Landen goetgevonden hadde, dat in de Universiteyt alhier opentlyck zoude gelesen werden in goede Nederduytsche Tale de Aritmeticque ofte het tellen ende het Landtmeten tot bevordering byzonder van den geenen, die hen tot oeffeninge van het Ingenieurschap sullen willen begeeven. Ende mitsdien nodig bevonden was eenige bequaeme personen daer toe te verwilligen, die soo wel de lessen daer toe dienstelyck in goeden bescheyden Nederduytsche Tale doen, als deselve gedaen synde, den toehoorders zouden mogen voldoen op te zwarigheden by hen luyden voor te stellen, mitsgaders ook die gedaene lessen werckelycke demonstreeren, 'tsy op 't Papier in 't cleyn als op 't veldt in 't groot, naer die geleegentheyt ende dienst van den toehoorders sal vereyschen. Soo is 't dat Curateurs van de Universiteyt ende Burgemeesteren der stad Leyden verstaen hebbende, die goede bequaemheyt, ervarenheyt, ende geschicktheyt in deselve consten van de Persoonen van Mr. Simon fransz. vande Merwen, Schepen der stad Leyden, ende Mr. Ludolff van Ceulen, deselve hebben aengenomen ende nemen aen mits deesen tot opentlycke leeringe van deselve consten. Te weeten, dat de voorsz. van Merwen ende van Ceulen haer in 't doen van de voorsz. Lessen | |
[pagina 130]
| |
ende 't werckelyck vertoonen van dien soo in cleyn als groot, ende voorts in alles sullen reguleeren, volgende de Instructie van syn Excelltie hen ten dien eynde geleevert, ende dat sy luyden sulx doende metten anderen sullen ramen hoe ende in wat voegen allerbequaemelyckst, duydelyckst, ende ten meesten dienst ende bevorderinge van den toehoorders de voorsz. Lessen sullen mogen gedaen werden. Ende dat dienvolgende op heur luyder beyder goetvinden de voorsz. Mr. Ludolff deselve lessen sal doen in 't bywesen van de voorne. van Merwen. Ende dat die lessen gedaen synde het eene half uyr, het ander half uyr by hen luyden sal geemployeert werden tot onderlinge 'tsamenspraecke, berechtinge van den toehoorders ende verantwoordinge van de swarigheeden die de selve hen luyden sullen voordragen op te gedane lessen ende 't gevolge van dien. Deselve in alles onderwysende 't sy by 't getal, linien oft andersints zoo 't best sal connen geschieden, in 't cleyn. Dat sy luyden oock 't sy gesamenlycken oft ook bysonder, nae gelegentheyt van saecken daer van demonstreeren, in t' groot sullen doen te velde conform de Instructie hier vooren gevoert, ende dit alles op een proeve onder toezegginge van eerlycke beloninge, die henluyden ter expiratie van de eerste drie maenten sal gedaen worden naer de diensten die sy bevonden sullen worden in deesen gedaen te hebben. Hebben voorts die voorsz. Curateurs ende Burgemeesteren tot een Leesplaetse geordonneert een gedeelte van de Faliebagynen Kercke ende de Bibliotheeque om met deelen afgeschooten en voorts soo met Banken ende stoelen als anders gemaeckt te werden bequaem tot een gemeene Leesplaetse, om 't welck te bevorderen gecommitteert zijn de voorn. Mr. Simon Fransz. van der Merwen ende Mr. Nicolaes van Zeyst, Pensionaris der stad Leyden ende Secretaris van de voorn. Curateurs ende Burmeesteren.’ Dit stuk is door mij overgenomen uit de Notulen van Curatoren der Leidsche Hoogeschool. Uit twee huwelijken had hij twaalf kinderen. Zijn tweede vrouw, adriana symonsz. of simons [zoo toch onderteekende zij de opdrachten van de beide werken van haren man, van de noten (16) en (17), die zij na zijnen dood in 1615 uitgaf] schijnt genoeg bekend te zijn geweest in het werk van haren | |
[pagina 131]
| |
man, om tot dien arbeid in staat te wezen. Zij heeft na den dood van van ceulen te Leiden een linnenwinkel opgericht en stierf in 1627. Het schijnt dat van ceulen twee testamenten heeft nagelaten een van 1609 en een van 1610. 3. Na deze korte schets van hetgeen mij omtrent het leven van ludolf van ceulen uit zijne geschriften bekend werd, - het kan misschien een geraamte zijn, waaraan later meer leven en bijzondere trekken kunnen worden bijgevoegd, - willen wij overgaan tot eene korte vermelding van zijne werken. De drie eerste van zijne werken, die ik bezit [zie straks de noten (8), (10), (11)], zijn nergens anders door mij aangetroffen, dan in gedeeltelijken nadruk in het werk van noot (16), door zijne weduwe uitgegeven. Zij zijn alle drie in 4o, niet gepagineerd: het eerste is met een ouden gothischen letter gedrukt: wat de Engelschen ‘black letter’ noemen: wat de beide anderen echter betreft, schijnen zij gedrukt te zijn, hoezeer men anders zoude meenen, dat zij op hout gegraveerd zijn met de toenmaals gebruikelijke schrijfletter. Dit zoude men althans besluiten uit de trekken, die onder aan vele letters voorkomen, en waarvan er sommige onder een zeker aantal andere letters doorloopen, sommige lager komen dan de bovenste trekken der onderstaande regel. Soms ook is de regel wat omgebogen, als 't ware om plaats te maken voor een break enz., die daarboven staat. Ik mag er ook hierop wijzen, dat deze beide boekjes zijn uitgekomen bij den bekenden ‘Figuersnijder’ harmen janszoon muller, niet bij een gewonen boekdrukker: waren zij werkelijk op hout gesneden, dan deden beide boekjes den houtsnijder alle eer aan, en konde men ze beschouwen als voorloopers van hetgeen men thans autographische drukken noemt. Men vindt dezelfde wijze van drukken nog bij andere stukjes van dien tijd: soms zelfs met uit de hand en met gewone inkt daarin geteekende wiskundige figuren. Het eerste werk ‘Solutie en Werckinge’Ga naar eind8) werd door van ceulen geschreven tegen zekeren willem goudaen [niet gondaen, zooals de heer vorsterman van oyen hem verkeerdelijk noemt in zijn opstel: Notice sur Ludolphe van ColenGa naar eind9)]; waarschijnlijk beteekent dit Goudanus, van Gouda, zooals het toen ter | |
[pagina 132]
| |
tijde gebruikelijk was, zich een naam aan te nemen. Hij be gint zijn ‘Aen den Goetwilli- || ghen Leser’ aldus. ‘DEwijle God/ van wien || alle goede gauen comen/ alleen alle || eere toecoemt/ sullen uwer E. niet || meenen/ dat ick de naeuolghende || Willem Goudaens tot Haerlem || aengheslagen twee questiones ghe- || solueert ende in druck wtghegeuen || hebbe/ Dier meyningh om yet meer || te willen schynen dan ick ben/ noch || oock den voorsz. Goudaen in zyn deuchdelick officie (zoo hy || dat noemt) te verhinderen: Maer alleen om my te verant- || woorden van tgunt hy my achter rugghe in zyne schriften || t'onrecht naegheeft/ dwelck hy in mijn teghenwoordicheyt || niet en heeft deruen veel min connen bewysen.’ Daarop verhaalt hij, hoe ‘Clement Cornelisz. Brouwer tot Delft’ hem den 17 Juni 1583 ‘aendiende dat hij tot Haerlem aende Kerck || deure op een bort affgetrocken hadde sien hanghen een || Geometrische figuere/ met.... belooninghe van eenen prijs’ voor de beantwoording ‘voor den 27 Iunij’; hoe hij daarop ‘wt yuer ende liefde der const/ den 21. Iunij’ daarheen was gereisd; hoe Goudaen eerst weigerde hem inzage der figuur te geven, die hij eerst ‘met een ander bort ende geschrift ghesloten’ had, maar daarna ‘door toedoen van eenighe omstaenderen’ daartoe gedrongen was; hoe hij ‘die vraghe || ... des ande- || ren daeghs te 7. vren smorgens lichtelick ghesolueert, ende || de solutie in by wesen van Michiel van Woerden Secreta- || rius aldaer, den voorsz. Goudaen aengheboden.’ Maar deze wilde die ‘niet aensien veel min ontfangen, singenden metten || coeckoeck zijnen sang, compt den eerste Iulij leeren, &c’ zooals hij reeds den vorigen dag had gedaan. Daarop was van Ceulen ‘geoorsaect geweest, de voorsz. Figuere mitsgaders de solutie van dien ..... open- || tlick doen aenslaen, ende also wederomme na Delft ghereyst ||’ maar toen Goudaen ‘een gheschrift met weynich bescheedts teghen my (van Ceulen) aenslaghen (hadt), inhoudende nef- || fens veel lasterende en vermetele woorden’ dat ‘men teghen my soude procederen/ soo ick hem niet || en ghehoorsaemde ende opten eersten Iulij niet en compa- || reerde &c’ ben ik ‘ten 1. Iulii tot Haerlem gecomen, heb ick || verselschapt met Michiel van Woerden ende Dirick Spijker || beyde Secretarissen, ende met M. Heyndrick Diricxzoon my || gheuonden ten huyse van den voorsz. Goudaen, sittende al- || daer met eenighe mannen, alwaer hy ghetoont heeft d'ar- | |
[pagina 133]
| |
ti- || culen ende conditien ... welck aldaer opentlick door Michiel vernot werden ghe || lesen’: deze hielden o.a. in, dat ieder die deze lessen van Goudaen zoude willen bijwonen ‘souden moeten tellen hon- || dert Daelders oft ten minsten hondert guldens.’ Van Ceulen had daarop aan Goudaan zijne solutie over-handigd en voorgelezen, hem de waarheid daarvan bewezen, maar Goudaan had daarop niets geantwoord, ja zelfs niet na het ‘thoonen || (eener) attestatie van eenighe der const verstandighe, die mijn werck || ende solutie ghesien, voor oprecht gheproeft, ende tot orconde || van dien met hem eyghen handen gheteykent hebben.’ Ten slotte was men overeengekomen, wederzijds de aangeslagen stukken te doen afnemen, ‘waer op hy my een dronck biers toedronck || ende ick hem bescheydt ghedaen mitsgaders malcanderen de || hant ghegheuen hebbende, zijn also (met vrientschap zoo ick || waende) gescheyden. So heeft hy nochtans daer na in || een zijn wtghegeven schrift (ghenaemt openbare presentatieGa naar voetnoot*) || sich onderwonden my wederomme met veel lasteren te schel- || den..... Soo wil ick hem nochtans het kyuen, lasteren ende roe- || men alleen behouden, ende my ghenoeghen laten, dat ick die || Solutie ..... al de werelt voor ooghen || stelle... Hier by voeghende twee by my ghe- || proponeerde exemplen daer ic Willem Goudaen (in plaetse || van weer lasterens) mede vereere.’ Daarop volgen twee Propositien ‘bij Willem Goudaen || Anno 1580 (en in 1583) tot Haerlem aengheslagen’ met hunne solutie zonder en door Coss. Eindelijk de ‘twee Vraghen || ghedaen ende ghestelt door || Ludolph van Collen.’ Allen betreffen veelhoeken en binomische wortelvormen, vraagstukken die toen ter tijde aan de orde waren. Voor de oplossing zal van Ceulen ‘hem schenken (inde plaet- || se van een tinnen canne) een fijnen Silueren beker: welcke gratuiteyt ia meerdere hem van rechts weghen sal toe- || comen als eenen hoochuerstandighen, die niet alleen met woorden || dan oock met der daet bethoont dat hy is (ghelyck hy hem || seluen beschrijft) een Correcteur, ende restaurateur der || erreuren inder veruallen (zoo hy seyt) const || Algebra, den welcken ick God beuele || van soo goeder herten als ick || gaerne ware zijnen, ende || een yder goede || vrient. || Ludolf van Colen || Tot Delft’. | |
[pagina 134]
| |
Al hebben wij hier slechts het zoo eigenaardige verhaal van van ceulen omtrent dezen twist, en bezitten wij niet de tegenzijde naar de beschrijving van goudaan, toch blijkt uit het aangehaalde genoegzaam de bijzondere wijze, waarop in die dagen zulk een twist werd gevoerd: en zal de beoordeeling van den rol, die beide partijen hierbij speelden, wel niet ten nadeele van van ceulen uitvallen. 4. Het tweede der boven bedoelde boekjes ‘Kort Claar bewijsGa naar eind10) is eene wederlegging van de ‘Quadrature du cercle’ van simon van der eycke, in het No. VII dezer Bouwstoffen behandeld. De voorrede luidt dus. ‘Beminde Lezer. || Gesien hebbende het Boecxken by Mr. Symon vander Eycke inden iare 84. || in druck uytgegeuen/ ende den doorluchtighen Vorst den prince van Oraignien || H.M. toegeschreuen/ waar inne de voornoemde Meester Symon stelt gheuonden || te hebben de volcomen ende juyste proportie eens Circkels circonferentie ieghens hare || diameter/ oock om een quadraat te maken/ net zoo groot zijnde als een voorgegheuen || circkel/ heeft my tzelue niet min vreemt als vermetelyck geschenen dewyle noyt eeni- || ge philosophen noch de hooghe verstandighe van aanbeghinne der werelt (datmen || weet) de voorschreuen volcomen proportie hebben connen te weghe brenghen: waar || door lust ende liefde der const my ghenodighet hebben om de waarheydt deser nieuwe || ervindinghe tondersoecken: maer het contrarie daar inne beuindende heb ic den voor || noemden Symon vander Eycke zijn misgrijp by monde vriendelyck aanghedient/ die || daar op andtwoordende zeer begeerde/ dat ick oft yemandt anders/ deze zijne inuen- || tie zoude teghens schrijuen/ ten eynde hy stoffe ende oorsake hadde de selue te verdaedighen || waar toe hy my oock naderhandt noch ernstelijck heeft doen versoecken. ‘Op dat het dan nieten schijne dat ick verwaandelyck berispe zonder verbeteringe/ || ofte my het verbeteren vermete sonder bewys/ heb ick zonderlinghe door daanporringhe || vande voorschreuen Meester Symon selue/ oock ouermits myne toesegginghe/ niel || connen laten cortelick te schryuen ende aen te wysen (twelck by andere geschictere geschic- || telycker had moghen off magh gedaen werden) dat de voorschreuen nieuw ervonden || propositie niet volcomen noch recht zy: waar toe my niet ghedronghen heeft ye- || mandts haet oft eygen eere/ | |
[pagina 135]
| |
maer alleen des Conste liefde/ die niet en magh || lyden datmen tot de Conste onrechte ende dwalende weghen banen soude/ niet twyfe- || lende oft de redelyck constgerighe/ sal tselue zo aanghenaam wezen/ ghelyck het alleen tha- || ren besten ghedaen is door hun alder dienstwillighe || Ludolph van Cuelen.’ (sic) In dit werkje berekent van ceulen den omtrek van den omgeschreven regelmatigen 192 hoek, en vindt ‘Als den diameter... doet || √32 + √512 + √131072 + √8589934592 + √27670116110564 || 327424 + [√] 9223372036854775808/ dan doet een zyde van een 192, eck || den Circkel omgheschreuen| √32 - √512 + √131072 + √85899345 || 92 + √27670116110564327424 + √9223372036854775808,’ zoodat || alsmen zet. 1. voor den diameter ende 3. 28497/199973 || voor de circonferentie’ dit getal reeds te groot is, ‘ende nochtans 3 69/484 (bij Symon vander Eycken || voor de circonferentie van ghelycke diameter ghenomen) 5589/96786932 langher is... zoo moet volghen dat Sy- || mon vande eycken den diameter te langh stellende/ sich in zyn inuentie grotelyck misgrypt.’ Dit ‘Kort Claer Bewijs’ draagt geen jaartal: het moet echter zijn uitgekomen tusschen de beide boekjes van simon van der eycke, de ‘Quadratvre du Cercle’ van 1584 en het ‘Claerder Bevvys’ van 1586; zoo was de onderstelling waarschijnlijk, dat het onbekende jaartal 1585 zoude zijn. Deze onderstelling wordt zekerheid door eene zinsnede in het derde, zoo straks te behandelen boekje: daarin vindt men eene aanhaling bladz. 6 (niet gepagineerd), regel 27: ‘In mijn boecxken welck tvoorleden Jaer gedruct is/ hebbe ic bewesen’. Nu is die ‘Proefsteen ende Claerder wederleggingh’ gedrukt in 1586: het gezochte jaartal is dus werkelijk 1585. 5. Toen hierop het ‘claerder bewijs’ van simon van der eycke verschenen was - zie § 9 van het No. VII der Bouwstoffen - antwoordde van ceulen in zijn ‘Proefsteen ende Claerder wederleggingh’Ga naar eind11). Ook dit stuk begint met eene voorrede. ‘Den Achtbaren Eersamen/ voorsichtighen ende wyzen Heeven/ den || Heeren Schouth Burgermeesteren/ ende Raedt der | |
[pagina 136]
| |
Loflijcken || stadt Delft/ wensch Ludolph van Colen geluck ende zalicheyt. || Op datmen my onwetelyck ende t'onrecht niet en beschuldighe/ dat ic || uyt eyghensoeckelyckheyt/ oft wangunste van eens anders eere/ eens an- || ders werck vermetelyck ende sonder billicke oorzake berispe/ (twelck || dat ken God verre zy) heeft my goet gedocht/ al voren int corte te verhalen/ doorspronck || ende eensdeels de redene/ die my beweeght hebben te schrijnen/ ieghens tghene ic zekerlyck || weet ende verstae/ de waerheyt niet ghelyckformich te zyne. Tis warachtigh dat Sy- || mon vander eycke Anno 84. ghedichtet/ in druck uytghegeuen/ ende den prince van || Oraignien. H.M. toegeschreuen hebbende/ de volcomen (zo hy waent) Quadrature des || Circkels (waer inne oyt alle hooghe verstanden besweken zyn) zyne hooghgedachte Exce- || lentie een exemplaer der voorsz Symons ervindinghe behandight heeft gehadt/ aen M. || Adriaen thonisszGa naar voetnoot*) Burgermeester tot Alcmaer/ als een heruaren en der const verstandi || ghe/ om by hem de waerheyt vandien ondersocht te werden: welcken Meester Adriaen de || voorsz Symons gewaende Quadrature onrecht hevindende/ my versochte van weghen || der const/ oock myn ghevoelen hem daer aff te willen te kennen gheuen:’ Over den rol, dien onze adriaen anthonisz. in deze twist speelde, hoop ik later meer bijzonderheden mede te deelen. Voorshands zij de opmerking voldoende, dat die zich niet bepaalde tot deze tusschenkomst, maar van veel gewichtiger aard is geweest. ‘Ende de wyle || nu de verswyging der bekende ende versochte waerheyt/ my effen zo ombetamelyck ghe- || weest zoude hebben/ gelyck het den vinder der voorsz. Quadraturen vermetelych isj is/ ie- || ghens de waerheyt te streuen/ zo heb ic na lang neerstigh ondersoeck/ zekerlyc gevonden || ende (daer toe ghevordert) rondelyck verclaert/ de voornoemde Symons geroemde vol- || comen proportie eens circkels circonferentie iegens haren diameter/ ghemist te zyne/ ende || volghens/ hem zyn misgriip int vriendelyck aenghedient: Oock voorts het bewys van- || dien (doch door voorgaende zyns selfs aenporren ende begheren daer toe ghedrongen zyn- || de) in druck aenden dach | |
[pagina 137]
| |
ghebrachtGa naar voetnoot*). Ende hoe wel mijn voorsz. bewys den Const ver- || standighen genoechsaem ontdect ende aenwyst/ d'onvolcomenheyt der voorsz. vander || eyckens gedichte proportie (ghelyck oock door de heruarene Meester Michiel coignett/ || van Andtwerpen Symon SteuenGa naar voetnoot†)/ Nicolaes peterszGa naar voetnoot§)/ Jan de groote/ Gideon fallett/ || Adriaen Ockerz/ ende meer andere/ hun dies grondelyck verstaende/ den eenen || na den anderen schriftelyck betuygen) Nochtans dewyle den voornoemden Symon van- || der eycke by zeker zijn onlangs uyt-gegeuen schrift uwer G.W. toegeschreuen/ vermetelyck || onderwint/ niet alleen om sich te verheffen int verneeren van de hervarenste eerste vā- || der conste/ ende met een ongegronde versieringhe/ zynen Meester (onverbetert) te || berispen/ int gunt hy selfs groflicker faelt/ Maer oock om den aencomers ende leerlin- || ghen/ zyn onzeker stuck werck voor de iuste volcomen Quadrature des Circkels/ wys || te maken/ ende in te planten:’ Hier bedoelt hij het ‘Claerder Bewijs’, door simon van der eycke in 1586 uitgegeven (zie noot 5 van No. VII dezer Bouwstoffen). Uit de bijgevoegde woorden blijkt, dat dit boekje is opgedragen aan Schout, Burgemeesteren en Raad der stad Delft. Van ceulen vervolgt verder. ‘Daer beneffens oock int voorsz. zyn uytghegeuen schrift is || arbeydende/ om het verstandt/ ende de waerheyt der zaken/ in mijn bewys opentlyck || ontdect/ met veel rechtschynende doch verkeerde ende onbestendighe alligatien duy- || sterlych te bedecken/ ende ouersulex my by uwer E.W. ende den gemeenen Volcke te || doen schynen/ recht off ic reden ende waerheyt missende in desen gedaen hadde/ anders || dan ic behoorde te doene/ so ben ic dan/ niet uyt eergiericheyt/ roem/ oft wangunste/ zo || vander Eycke my t'onrecht nagheeft/ maer eerst-mael versocht/ nu andermael ghe- || dronghen ende ghenootsaect/ tot de voorsz. vander Eycke geroemde volcomen ende || iuste proportie/ alsulcken/ recht onderscheydende proefsteen ende cláerder wederlegginghe || te gebruycken/ dat de selue/ zijne versierde proportie/ een schelende ongelycmatigheyt/ ende || | |
[pagina 138]
| |
zyn klaerder bewys (so hy zyn schrift noemt) een meerder verwerringe blycken sal: || want dit zyn tweede schrift (als ooc het eerste) niet alleen groflyck mist/ maer ooc iegens || het eerste (waer van hy het tweede een verclaringe waent te zyne) opentlyck is strydende.’ Zooals men gezien heeft in No. VII dezer Bouwstoffen, had simon van der eycke eerst voor de quadratuur gevonden 3 69/484; later in zijn tweede boekje ‘Claerder bewijs,’ heeft hij evenwel deze verhouding laten varen, en daarvoor in de plaats gesteld den vorm √[(5120)-32], die eene andere waarde bleek te hebben. Beide uitkomsten waren derhalve met elkander in strijd, zooals van ceulen hier terecht opmerkt. ‘Wat een Lofflycken ende nutten Leser desen Leermeester Archimedis allen hooghen || verstandighen daermede is doende/ ende hoe mildelyck uyt dese ydel scranpratyt de uyt || delinghe van zijn gevonden iuyste metinghe des circkels/ die hy aller natien der we- || relt in zyne voorreden beroemelyck beloost geschieden sal/ laet ic u. E.W. bedencken/ ende || den verstandighe onderzoeckeren beuinden/ den welcken ick desen navolghenden proef- || steen tonderzoecken ende t'oordeelen voorstelle/ met aenbiedinge den seluen in iegenwoor- || dicheydt van uwer E.W. ende den const verstandighe mannen te proeuen/ ende || oprecht te doen blycken, et cet. Maer dewyle het bewys alleenlyck inde daet ende niet in wercklooze woorden bestaet/ || sal ic u. E.W. met gheen langher voorreden quellende twerck ter handt nemen/ wen- || schende dat uwer. E.W. daer toe geduldighe ooren ende nauziende ooghen/ gheliefden || te verleenen/ ten eynde door onkunde der zaken/ des voornoemden Symons vander || eyckens schynende bewys/ by uwer E.W. in sulcker aensien ende achtingh niet en come/ || dat de waerheyt daer by verduystert/ die merckelycke dwalinge ghehandhaeft/ ende || een ongegronde ongelyckmatigheyt voor een ghewisse metinghe des cirkels aengenomen || werdt/ tot oneere ende vervalsingh der const/ ende verleydingh van den ieghen- || voordighen ende nacomenden Leergerighen/ den welcken ic zo gaerne geuordert zaghe ghe- || lyck ic uwer E.W. gedienstelyck bidde/ dese myne waerschouwinge ende arbeyt (ten dienst || ende nutte der Constliethebberen willigh ghedaen) ten | |
[pagina 139]
| |
besten ende met opmerkinghe te || willen aennemen. Hier mede zyn uwer E.W. den Almachtighen bevolen. || Binnen Delft desen 3. Juny 1586. || Bij uwer E.W. || Dienst schuldighen Ludolph van Colen.’ Deze voorrede meende ik te moeten afschrijven, omdat zij verloren was geraakt, en ons een blik doet werpen op de houding der personen, die bij dezen twist betrokken waren. Wat de methode betreft, door van ceulen gevolgd, is die in het boekje van § 4, de gewone, om van de zijde van een regelmatigen veelhoek tot die van een anderen veelhoek met een dubbel aantal zijden over te gaan, Eerst echter bewijst hij dat de omtrekken van omgeschreven veelhoeken grooter, die van ingeschreven veelhoeken kleiner zijn dan die van den cirkel. In het laatst aangehaalde boekje trekt hij eene raaklijn aan het eene uiteinde der middellijn, en snijlijnen van het andere uiteinde dier middellijn: wanneer van die snijlijnen het stuk bekend is, dat door den cirkel wordt afgesneden, kan men de koorde van den supplementsboog als rechthoekszijde berekenen, en dus ook het andere stuk van de snijlijn, begrepen tusschen den cirkel en de bovengenoemde raaklijn. De eerste methode past hij toe op den regelmatigen 192hoek, zooals wij in § 4 zagen; de tweede op den 96hoek, en vindt daarmede dat 3 1410300/10000000 te klein en 3 1427232/10000000 te groot is. Hij eindigt dit gedeelte met de woorden ‘Actum 3. Juny 1586. || Naerder Proportie || Als den Diameter eens Circkels doet. 1. moet de circonferentie langher || zijn dan 3 141557587/1000000000 ende corter dan 3 141662746/1000000000.’ Hij vermeldt daarbij echter niet, hoe hij tot die uitkomst is geraakt. 6. Maar dit laatste boekje bevat nog een ‘Corte verclaringhe op simpel reductie,’ ook op den titel vermeld, waarin hij van der eycke ook op het punt van ‘simpelen interest’ terecht zet. Hij begint met eene woordspeling aldus. ‘Dat Symon vander eycke tot dolen geboren/ doolt inde hooghwigh- || tighste stucken der const/ daer de vertandinghste philo- || sophen in bezweken zyn/ is niet te verwonderen: maer | |
[pagina 140]
| |
dat hy || in dolinghe hertneckigh voort vaert/ hem seluen bouen de verstan- || dighe stelt/ ende nochtans groflyck faelt in de slechtste beghinse- || len der Arithmetiken/ waeraff de geringste Leerlinghen reden en ordeel connen ghe- || uen/ is niet min vreemt als berispwaerdigh. Dat ic nu (E.W. Heeren) || dit hier by voeghe/ is der haluen dat Symon vander eycke hem beroemt/ || eenen constighen/ ende rechten wegh ghevonden te hebben/ om eenighe schulden/ die op || iaerlycxe paeyn te betalen zyn/ in ghereet gelt te reduceren/ op simpelen interest: geuende || stoutelyck van hem (hoe wel zijn solutie onrecht) dat veel andere (heruarender || dan hy) die niet met hem ghevoelen de waerheydt ghemissen: Selfs dat ic tot || meermael/ oock noch onlangs/ van eenen des voornoemden vander eyckens || discipel heb moeten hooren/ dat ic zoe wel inde simpel reductie als int weder- || legghen vande quadrature onrecht hadde.’ Niet van belang ontbloot is het slot, omdat van ceulen daarin verhaalt, hoe hij toen reeds bezig was met een uitgebreider arbeid over interest-rekening, die eerst tien jaren later (zie hieronder § 7) is uitgekomen, en waarop hij zelf grooten prijs stelde. Hier zegt hij daaromtrent. ‘Hier mede beminde verstandighe Leser/ een eynde makende/ laet ic. u. E voor- || der bedencken/ hoe sekerlyck ende ghewis/ hy der hooge philosophen twijfelachtighe/ || ende by hun onuytlyckeswaerheden/ vinden ende uyten can/ die in dusdanige cley- || ne ja kindsche dinghen beswycken/ ende latende den voornoemden Meester Sy- || mon met sijnen discipel het heure behouden/ sal ic (indien my God daer toe || sparen) zo van desen simpelen/ als gecomponeerde interest/ onder anderen wichtigher || stucken der Conste/ breeder handelen in secker boeck twelck ic/ tot nut ende dienst || der goethertigher leerlinghen/ ende tot genoegen (hoop ic) vanden verstandighen/ || voorghenomen hebbe/ in druck te gheuen. Hier en tusschen weest Godt bevolen/ ende || neempt dit ten besten van uwen goetwillighen. || Ludolph van Colen.’ 7. En thans komen wij tot de grootere werken van van ceulen, die wel meer voorkomen, en meermalen worden aangehaald, maar wier inhoud daarom nog niet altijd goed gekend of juist gewaardeerd wordt. Het eerste is zijn ‘Vanden Circkel’ te Delft in 1596 in | |
[pagina 141]
| |
folioGa naar eind12) uitgegeven: het was hierin, dat hij het eerst zijn rechtstreeksch onderzoek omtrent de verhouding van den omtrek tot de middellijn van den cirkel bekend maakte, dat hij reeds in het vorige boekje van § 5 begonnen had. Hij zegt daaromtrent in zijn opdracht ‘Dese mijne inventie die ick door Gods || genaden in 't jaer 1586 gevonden hebbe/ ende den voornoemden Meester Jan de Groot [Burgermeester der stede Delft noemde hij dezen vroeger] || ende den konst-rijcken Meester Symon Stevijn, een Man van groot verstandt in desen/ || en veel ander konsten: Mede Meester Gedion Faleth Secretarius der Stadt Aem- || stelredam. Item Adriaen Ockertsz ghezworen Land-meter der selver stede/ ende den || hoogh geleerden Joannes VVilhelmus Velsius, D. tot Leewaerden: Oock mede Symon || Fransz vander Mervven, Burgermeester der Stadt Leyden/ ende Adriaen Anthonisz. || Burgermeester der Stadt Alcmaer/ Ingenieur der Staten van Hollandt/ ende Pieter || Jansz. vander Houck, gezworen Land-meter van Delff. Item Meester Mathijs Min- || tens Franchoysche School-meester/ ende Reken-meester tot Leyden/ ende ten lesten || den hoogh-geleerden Mathematicus Rudolphus Snellius Professor inde Universiteyt || tot Leyden.... ghethoont hebbende mijn ghe- || vonden werck.’ Deze opsomming van wiskundige tijdgenooten is niet zonder belang: met enkelen daarvan zullen wij, hoop ik, nader kennis maken, alsook met ‘den wijdt-beroemden hoogh-gheleerden || Adriaen van Romen,’ die veel met van ceulen schijnt te hebben opgehad. Voor deze eerste benadering gebruikte hij de opvolgende zijden van om- en ingeschreven veelhoeken, door telkens het aantal zijden te verdubbelen, tot aan den veelhoek van 233 × 60 = 32212254720 zijden. Op die wijze bepaalde hij twintig decimalen zuiver; men vindt die uitkomst op de eerste bladzijden van het blad No. 14 (hetgeen door 141 worde aan gegeven). Hij zegt daarbij het volgende. ‘Die lust heeft/ can naerder comen: Ick dancke den almachtigen Godt/ daer door my bekent is/ als den Diame- || ter eenes Circkels doet 200000000000000000000/ duymen/ voeten/ ellen/ ofte wat mate || men begheert/ dan is syn omloop der selver mate 628318530717958647694 te langk/ en- || de 628318530717958647692 te cort.’ | |
[pagina 142]
| |
Langs denzelfden weg zocht hij ook de omgekeerde waarde van onze gezochte verhouding, en vindt, drie bladzijden verder, dat is bladz. 152. ‘Daerom sal anders niet bevonden werden/ als || den omloop eenes Circkels doet 2000000000000000000/ dan sal voor syn middel-linie || comen/ min dan 6366197723675813431/ ende meer als 6366197723675813430.’ Het eerste gedeelte ‘Vanden Ronden Circkel,’ waarin het vorige voorkomt, is verdeeld in zeventien hoofdstukken, en bevat nog na de ontwikkeling der voorgaande waarden, verschillende bewerkingen en berekeningen over aanverwante onderwerpen. Het zeventiende hoofdstuk bevat bladzijde 262-482 ‘Tafelen voor de Land-meters || Tafelen van Sinuum, Tangentium ende Secantium, tegen 20000000 den Dia.,’ dus met zeven mantissen: hij noemt die hier ‘Sinus, Perpendi. [of Perpen., voor Perpendiculaer] en Snijder.’ Hiervan leert hij het gebruik in Capittel XVIII, bladz. 491-532, met het hoofd ‘Vande Rechte Linien’ en in Capittel XIX-XXI, bladz. 532-631, met het hoofd, ‘Van 't Land-meten.’ Daarop volgen bladz. 631-662 een achttiental stellingen omtrent den cirkel, met het opschrift: ‘Hier volghen nu eenighe konstighe || stucken den Circkel aengaende/ Geproponeert/ ende gevonden door || een hoog-gheleert Man: Daerinne syn door-luchtig verstandt || ghemerckt werdt/ welcke stucken aen mijn ghesonden zijn/ be- || gheerdt mijn meninghe daer van te weten: Daerom ick || door 't onder-soucken de selve beantwoordt hebbe/ || ende meest door ghetal goedt ghevonden/ || Als volght: ||’ Blijkens hetgeen in de Voorreden vermeld wordt, is deze hoog-geleerde man niemand anders dan adriaan van rome of romainus, die met van ceulen zeer bevriend was, en met wien wij, zooals reeds boven werd gezegd, later kennis hopen te maken. Reeds hier staat aan het hoofd der bladzijden ‘Konstighe Vraghen’, welke titel eigenlijk behoort, en dan ook gebruikt wordt, bij Capittel XXII, bladzijde 662-722, die de ‘hondert Exempels’ of hondert konstighe Vraghen bevat, waarover wij later zullen te spreken hebben. | |
[pagina 143]
| |
Van ceulen eindigt dit eerste gedeelte met het vers: ‘Ich thu das meine, Soo viel mijr God bescheert,
Ein ander thu das seine, Soo vvirdt de Const ghemheert.’
Het tweede gedeelte bevat met doorloopende pagineering, Fol. 771-1142 de ‘Interest-Rekeninghe’, waarin hij onderscheidene vraagstukken van gewone en zamengestelde interest, van disconteering en rabat, van gezelschapsrekening behandelt. Dit werk werd door den schrijver zelven van eenige waarde gerekend: hij eindigde het met de woorden ‘Godt alleen de eer’, en rekende een dier vraagstukken van genoeg gewicht, om het op den eersten titel te doen graveeren: ‘Een leent [aan] 7 ander [A, B, C, D, E, F en G] 1000 f [gulden], op gelijcke intrest ten 100 int iaer. A ghebruickt || zijn deel [van de 1000 gulden] 12, B 10, C 9, D 8, E 6, F 5, G 3 maent. Betaelt elck ten einde [bij het einde] zijns || tyds, voor geleent gelt ende gewin [voor kapitaal en interest, zouden wij zeggen] A 300, B 280, C 260, D 256, E 244, F 240, G 220 f [gulden] ||. Vrage na het geleent gelt van elck, ende na den intrest ten 100 int iaer.’ Dit gedeelte droeg hij op aan de ‘Edele Achtbare VVyse || seer Voorzienige Heeren, Schovt, || Bvrgermeesteren, ende Regierders der || stede Leyden.’ De theorie behandelde hij Fol. 771-1051, en gaf daarop Fol. 1051-1082 zijne ‘Tafelen van Interest’ tegen den penningh 4 tot 20 en 25, en daarop tegen 4-20 ten 100 in 't Jaer. Reeds bij de theorie behandelde hij 134 vraagstucken, die daarop betrekking hebben; achter de tafels, laat hij Fol. 1091-1132 nog de Exempelen 135-178 als voorbeelden daarbij volgen. Merkten wij zoo even op, dat van ceulen zelf aan deze Interest Rekeninghe nog al eenig gewicht hechtte, evenzoo was ook de meening van andere deskundigen. In den jare 1599 toch werd er door de Leidsche Magistraat eene onderzoek ingesteld ‘tot het maecken vande reductien vande Jaer-custinghen tot gereede penningen’: daartoe werd eene commissie van experts (‘alle inde cijfer-conste wel ervaren’) benoemd, onder den Stadssecretaris jan van hout: zij bestond uit den reeds genoemden symon fransz. van merwen, jan pietersz dou, | |
[pagina 144]
| |
zeer gunstig bekend landmeter, over wien, met het oog op de droogmaking van de Haarlemmermeer, de heer amersfoort onlangs heeft geschrevenGa naar eind13); matthys mintens, een schoolmeester. En het was deze arbeid over interest-tafels, die ook aan van ceulen eene plaats in deze commissie verzekerde. Het rapport van deze commissie werd op het Raadhuis van Leiden gedruktGa naar eind14) en is vrij zeldzaam: het bevat merkwaardige bijzonderheden over hollandsche lengtematen, hunne verdeeling en verificatie. Maar ook hierbij bleef het niet: volgens gewoonte dier dagen werd door de Staten van Holland aan onzen van ceulen eene gratificatie toegelegd voor dezen arbeid ‘van den Circkel’ en wel den 25sten November 1596Ga naar eind15); dus nog lang vóór de Leidsche commissie. 8. In de tweede voorrede van zijn werk ‘van den Circkel’ ‘Aende Konst-lievende Lesers’ schreef hij op de tweede bladzijde. ‘So verre ick danckdaerheyt mercke || sal haest naer desen volghen een grooter werck/ daer inne onder andere ghehandelt sal || werden van den alder-constighsten Regel Cos/ met veel konstighe Exempels/ my van || veel Meesters deser konst te maken ghesonden/ met de beantwoordingh/ ende het gene || daer op ghemaeckt ende ghevonden is/ Met noch het noodtwendighste der voornoem- || den Regel Eos/ welck ick tot Aernhem op 't Hoff van Gelder-landt Anno 1589 gevon- || den hebbe/ door de hulpe van Godt/.’ Maar het schijnt, dat zijne veelsoortige, en drukke werkzaamheden hem verhinderd hebben, zijn voornemen ten uitvoer te brengen: althans in de voorreden van het werk, aangehaald in Noot (17, schrijft zijne weduwe. ‘Hebbe derhalven oock || dese Aritmetische ende Geometrische Fondamenten van Mr. Ludoff (sic) || van Colen mijn man sal: ged: de welcke al over lange jaren van den || Autheur selve (in sijn boeck gheschreven vanden Circkel) zijn be- || looft gevveest, doch van wegen zijn veelvoudige, soo publijcke als || particuliere occupatien, tot noch toe inghehouden, int licht laten || comen, ten dienste der nakomelinghen.’ Hieruit volgt, mijns inziens, dat de heer vorsterman van oyen zich moet vergist hebben, toen hij den datum der eerste | |
[pagina 145]
| |
uitgave van dit aangehaalde werk, ‘de Arithmetische en Geometrische Fondamenten’ op 1595 vaststelt; zie diens ‘Notice sur Ludolphe van Colen’, boven aangehaald in Noot (9). Dewijl verder die weduwe in de tweede uitgave van het werk ‘Vanden Circkel’, slechts de gedeeltelijke overdrukken der boven in Noten (8), (10), (11) aangehaalde werkjes inlascht: mogen wij daaruit tot de gevolgtrekking besluiten, dat die werken van Noten (8), (10), (11) en (12) de eenige zijn, die door ludolf van ceulen zelven zijn uitgegeven; en dat die werken, welke wij thans zullen gaan beschouwen, alle na zijnen dood eerst het licht hebben aanschouwd. 9. Het eerste werk, dat die weduwe onder handen nam, was eene tweede uitgave van zijn ‘Vanden Circkel’ in 1615 te Leyden in 4o.Ga naar eind16). Deze tweede druk is van een kleiner formaat: volgens het beweren der uitgeefster, geheel van fouten gezuiverd. Tusschen het eerste werk ‘vanden Circkel’ en het tweede ‘Interest-rekeninghe’ [die trouwens met eene nieuwe pagineering en ook met eene nieuwe signatuur begint; zoodat het als het ware, een nieuw werk vormen zoude, ware het niet, dat daarbij de nieuwe titel, de opdracht en de voorrede geheel ontbreken]; - tusschen beide in heeft zij de reeds behandelde werkjes van de Noten (8), (10), (11) ingeschoven, maar even-zeer met weglating der titels en der voorrede van het laatst-genoemde. Natuurlijk vindt men ook hier onze verhouding tusschen den omtrek en de middellijn van den cirkel: doch zij heeft het hier, evenzeer als in het oorspronkelijke werk, slechts bij twintig decimalen gelaten, hoezeer haar toen reeds, zooals wij straks zullen zien, een veel grooter aantal uit de papieren van haar man ten diensten stond. Hier heeft zij echter niets meer, dan eene herziene tweede uitgave willen leveren. Zij droeg dezen arbeid op aan de ‘Achtbare, VVijze, ende zeer voorzienighe || Heeren || mijn heeren || bvrgemeesters || ende || Regeerders || Der Stadt || Leyden’; misschien wel met het oog op eene dergelijke gratificatie, als reeds haren echtgenoot was ten deele gevallen. Immers haar man had eene ‘Huys-vrouvv, Kinderen, en geheele Familie’ ‘ende een Huys vol kinderkens’ maar ‘sobere middelen’, want zeide hij ‘soo en bevinde ick in, ofte by my niet, daer mede ick 't selve in eeniger | |
[pagina 146]
| |
manieren soude kunnen verschuldighen, ... naedemael ick voor de handt anders niet en hebbe.’ [Zie de voorreden voor beide deelen van het werk, aangehaald in Noot (12)]. In deze opdracht verklaarde zij voornemens te wezen, ook de overige geschriften van haren man uit te geven. ‘Daerom na dien Mr. Ludolf van || Colen mijn Man sal. ghed. sich mede niet so seer || eenen eeuwighen Naem door soodanighen mid- || del (het welcke nochtans behoorlijck/ jae prijse- || licken is) heeft willen maecken/ als wel syne na- || komelinghen dienstich zijn/ ende dat selvighe al || by syn leven/ begonnen: Soo hebbe ick het be- || hoorlijck gheacht te wesen/ zijn resterende werck/ || het welcke onder my is berustende/ soo veel als || moghelijck is/ in het licht te brengen: ende hebbe || dit jegenwoordighe Boeck/ als een preambulum || ende beghinsel voor laten gaen/ ende goet ghevon- || den de selve uwe E.W. als Patronen ende Me- || cenates van soodanighe wetenschappen te dedi- || ceren ende op te draghen. Ootmoedichlijck || versoeckende dat ghy de selve in danck wilt aen- || nemen.’ 10. En deze belofte deed zij gestand; want reeds in hetzelfde jaar gaf zij uit de ‘Arithmetische en Geometrische Fundamenten’Ga naar eind17). Dit werk bevat zes Deelen; het eerste handelt over de fondamenten van Arithmetica, en vooral over worteltrekking; het tweede over de fondamenten van Geometrie, uyt Euclides getrocken, en bevat 33 Diffinitiën en 84 propositiën; het derde leert de Figueren op menigerhande, manieren te veranderen, item die te deelen, daerbij te voeghen ende af te snijden na begeeren, met 14 werckstucken, 27 vraghen en een ‘Bijvoegh’ van 14 propositiën. In het vierde deel worden veele (56) constighe Geometrische exempelen ghestelt ende ghesolveert. Het vijfde deel handelt van constighe trecken, bewezen eensdeels Geometrici (sic) ende door getallen, door Coss ende door de Tafelen ghesolveert: hier vindt men 46 vraghen. Eindelijk het zesde deel, daer in eerst ghehandelt werdt van de ghelijcksijdighe figueren, in ende om de Circkels beschreven, ook met het ghebruyck der tafelen in figueren van cromme linien; waarbij 17 vraghen voorkomen. In het derde boek (op bladz. 163) komt de verhouding van den omtrek tot de middellijn des cirkels voor in twee | |
[pagina 147]
| |
en dertig decimalen, die alle juist zijn; hij had die gevonden met behulp van zijn leerling pieter cornelisz., hoezeer hij overtuigd is, dat zijne vroegere benadering tot twintig decimalen ruim voldoende is voor alle berekeningen; omtrent de berekening dier meerdere decimalen treedt hij in geene nadere bijzonderheden, ofschoon het zeer waarschijnlijk is, dat daarbij dezelfde methode door hem is gevolgd. Ware het toch anders, dan zoude hij zeker daarvan melding hebben gemaakt, al was het dan niet zoo uitvoerig, als hij ook hier weder de eerste methode beschrijft. Van ceulen zelft zegt daaromtrent op de aangehaalde plaats. ‘In mijnen boeck van den circkel, is bewesen, als den Diameter eenes || circkels is 3 14159265358979323846/100000000000000000000 mael vvert genomen, comt een linie || vvelcke te cort is voor den omloop des selven circkels, ende den Diameter || ghenomen. 3 14159265358979323847/100000000000000000000 mael, compt te lanck voor den om- || loop, hoe vvel men door dese can meten alle circkels, vvelckte op deser Aer- || den moghen voor-ghestelt vverden, nochtans heeft mijn ghelust dese reden || veel naerder te soecken met hulpe mijnes Discipels Pieter Cornelisz. te vve- || ten, den Diameter ghenomen. 3 14159265358979323846264338327950/10000000000000000000000000000000000 || mael, compt te vveynich, ende 3 14159265358979323846264338327951/10000000000000000000000000000000000 || mael ghenomen, compt een rechte linie, vvelcke langher dan des circkels || omloop is.’ Hier is echter eene drukfout ingeslopen; de beide laatste noemers bevatten 34 nullen, in plaats van 32, het aantal cijfers in den teller. Vanhier komt misschien de overlevering, dat ludolf van ceulen 34 decimalen gaf in zijne werken: die komen echter noch hier, noch ergens voor; evenmin in de vertalingen door r. snellius, waarover straks nader. Nergens vindt men meer dan de boven gegeven 32 decimalen. Wij zagen evenwel reeds boven in § 2, dat die twee ontbrekende decimalen in het grafschrift van van ceulen zijn teruggevonden; doch ook hierover straks. | |
[pagina 148]
| |
11. Omtrent de uitgave van deze twee werken en de opdracht daarvan zijn nog een paar bijzonderheden mede te deelen, wier wegblijven misschien op een dwaalspoor konde brengen. In de Bibliotheca Utenhoviana van de Akademische Bibliotheek te Utrecht komt een exemplaar voor van het eerste werk, aangehaald in Noot (16), volkomen gelijk aan het beschrevene; ook de titel is geheel dezelfde, behalve de beide laatste regels, die hier luiden. ‘Voor jacob marcvs, Boeck-vercooper/ || Anno 1615.’ zoodat daaruit blijkt, dat hetzelfde werk, bij twee verschillende boekverkoopers is uitgegeven. En het is ook geen hernieuwde uitgaaf [een titel uitgaaf zooals men zulks pleegt te noemen, waarbij een nieuwe titel voor een oud werk wordt gebracht]; want het jaartal 1615 is mede hetzelfde. Wat het tweede werk betreft, dat van Noot (17): hierbij is eene andere, merkwaardige bijzonderheid te vermelden. Ik bezit toch daarvan een exemplaar, waarin de opdracht aan ‘Graef Ernest van Nassav’ en de ‘Edele Moghende, Hoochvvijze, ghebiedende Heeren de Staten der Provintie van Gelderlandt,’ is weggelaten. Maar daarin wordt zij vervangen, door een opdracht (in verso van den titel) ‘Aen den || Hooch-gebooren Vorst ende Heere Mavrits, mitsgaders de Edele, Hoochmogende, VVijze, Voorzienighe Heeren de Staten van Hollandt ende West-Vrieslandt.’ Daarop volgt een voorrede van 2 bladz., geheel en al verschillend van de beschrevene en eenige malen aangehaalde. Missen wij dus in dit exemplaar de bijzonderheden uit die voorrede, die voor ons van gewicht waren, - deze tweede opdracht is voor adriana symons van het meeste nut geweest: want het was zeker dientengevolge, dat zij haar wensch naar een subsidie bevredigd zag: daarop volgde toch denkelijk de resolutie der Algemeene staten van 29 Juni 1615, waarbij haar, op haar verzoek, eene som van 72 gulden werd toegekendGa naar eind18). In de bibliotheek van het genootschap: ‘Een Onvermoeide Arbeid, enz., te Amsterdam, vindt men een exemplaar, dat is opgedragen ‘Aende Hoochweerdige Voorsienighe, wyse Heeren || de Heeren svperintenden- || ten ende Raden der Admiraliteyten van Hollandt || ende West-Vrieslandt.’ 12. Gaan wij thans er toe over, om te zien wat de Leid- | |
[pagina 149]
| |
sche Hoogleeraar in dien tijd willebord snellius R. Fil. voor den arbeid van onzen van ceulen heeft gedaan. Diens weduwe adriana symons had hem inzage gegeven in de papieren van haren man, waarin zij, zooals wij reeds vroeger zagen, goed tehuis schijnt geweest te zijn: en daarom was het hem niet moeijelijk daarvan eene latijnsche vertaling in het licht te geven. Het waren echter geene zuivere vertalingen die hij leverde, maar eerder omwerkingen, althans zeer vrije vertalingen. Bovendien was de druk niet overal even nauwkeurig, soms zelfs ergerlijk slordig: men zoude bijna meenen, dat hij zich van dit werk kweet, omdat hij zulks niet gevoegelijk konde achterwege laten; maar zich aan de nauwkeurigheid van den druk, iets dat bij wiskundige werken van dezen aard, met vele getallen, toch van het hoogste gewicht is, niet veel liet gelegen liggen. Daartegenover staat echter, hetgeen men niet vergeten mag, dat snellius door deze vertalingen in het latijn de werken van van ceulen ook buitenslands bekend deed worden, waar diens hollandsche werken wel niet zouden zijn doorgedrongen. Zijn eerste arbeid in deze richting was de latijnsche uitgave ‘Fundamemta (sic) Arithmetica et Geometrica in 1615’Ga naar eind19). Uit de inhoudsopgave blijkt reeds duidelijk, op welke wijze snellius is te werk gegaan. Het eerste boek bevat ‘Surdorum Arithmetica’; het tweede ‘Geometrica quaedam Fundamenta ex Euclidis selecta’. Daarop volgen met een afzonderlijken titel ‘Lvdolphi a Cevlen Variorum Problematum Libri 4’, een opdracht aan ‘D. Aemilio Rosendalio J.V.D.’; het derde tot het zesde boek: de pagineering echter blijft doorloopen Liber III ‘de Figurarum transmutatione et sectione’, Problemata 45. Liber IV ‘de Δεδομένων Geometricorum per numeros solutione’ Zetemata 57. Liber V (verkeerdelijk staat er ‘quartus’) ‘Problematum miscellaneorum’, behandelende 35 problemata. Liber VI ‘de Figuris ordinatis circulo adscriptis & alijs quibusdam huc spectantibus’ met 12 Problemata. Eindelijk een toevoegsel ‘Appendicula de circulo data ratione secando’, met 3 Problemata. In dit werk vindt men de 32 decimalen onzer verhouding in het tweede Zetema op bladz. 144. In het jaar 1619 deed snellius daarop volgen ‘de circulo | |
[pagina 150]
| |
et adscriptis’Ga naar eind20), eene latijnsche bewerking, waarin het gedeelte van het werk, beschreven in § 7, en wel met weglating onder anderen van het geheele tweede gedeelte. - met een uittreksel uit het zoo even behandelde werk. Dit boek is bij uitstek slordig gedrukt. De paginatuur is soms geheel in de war; men vindt toch achtereenvolgens: bladz. 1-31, wit, 33-79, 5 wit, 85-101, 101, 103-107, 118, 119, 120, 111, 120, 113, 135, wit, 137-160, 159-213, 2014, 215-269. Wat den inhoud betreft, heeft men eerst ‘Surdorum quadraticorum Arithmetica’; daarop volgt dadelijk ‘De Figurarum transmutatione et sectione’ als Liber II; als Liber III ‘De Δεδομενων Geometricorum per numeros solutione’, waarbij als hoofd des bladzijden dikwerf voorkomt ‘De Zematum (sic) Geometricorum Epilogismo’ soms met verschillende lettersoort. Daarna volgt ‘Problematum miscellaneorum liber quartus’ met het hoofd der bladzijden ‘De Problematis Miscellamis sic).’ Lib. V ‘de Figuris ordinatis circulo adscriptis’ met het hoofd der bladzijden De inventione polygonorum’. Dit boek bevat slechts 3 Problemata en een bijvoegsel. Het geheel bevat 220 bladzijden (terwijl het boek van Noot (19) er 269 bevat). Dan volgt met afzonderlijke signatuur, bladz. 1-54 ‘De Circulo et adscriptis Liber’ van ‘Ludolhi (sic) à Ceulen.’ Bij beide uitgaven schijnt snellius herhaaldelijk gebruikt gemaakt te hebben van de aanteekeningen van ludolph van ceulen. Deze beide uitgaven van de werken van ludolph van ceulen door snellius, in verband met den eigen arbeid van snellius, dien wij straks zullen aanhalen, hebben tengevolge gehad, dat de werken van van ceulen buitenslands meer bekend zijn geworden: maar ook, dat het oordeel dier buitenlanders over beider arbeid, hetgeen misschien uit den vorm der behandeling werd opgemaakt, niet rechtvaardig was. Men schreef aan snellius eigenlijk de methode toe, die toch buiten eenigen twijfel aan van ceulen toekwam: en bij het naschrijven van deze meening kwam men er toe, om, zonder opzettelijke bestudeering der werken, snellius voor den fijneren analyticus, van ceulen slechts voor een bloot onvermoeiden rekenaar te | |
[pagina 151]
| |
houden. En nu werd, loffelijker gewoonte, dit oordeel weder door onze landgenooten overgenomen, zonder nader onderzoek: zoodat men zulks in onze nederlandsche biographische Encyclopediën herhaaldelijk kan terugvinden. Wanneer echter het onderzoek, waarmede wij ons thans bezig hielden, slechts dienen mag, om van ceulen in zijne eer te herstellen - die van willebrord snellius behoeft echter allerminst daaronder te lijden - dan is het doel van dit opstel in dit opzicht bereikt. 13. Twee jaren later gaf dezelfde willebrord snellius een eigen werk uit over dit onderwerp, zijn ‘Cyclometicus’Ga naar eind21) van 1621, waarover wij bij gelegenheid naderhand te spreken hebben. Hier behoeven wij slechts hetgeen snellius op bladz. 54 en 55 zegt. ‘diligentinimus || logista, Ludolphus noster, initio facto, à latere quadrati e- || andem inscriptarum inventionem sexagies continuavit, ad || taxationem diametri quinque & septuaginta circulorum, || & inde demum istos limites nobis summo cum labore ex- || pressit, quos ideò sepulchro suo tanquam exantla to- || rum laborum testes insculpi jussit. || 3 14159/100000, 26535/00000, 89793/00000, 23846/00000, 26433/00000, 83279/00000, 50289/00000, || 3 14159/100000, 26533/00000 (sic), 89793/00000, 23846/00000, 26433/00000, 83279/00000, 50288/00000. ||’ Het was deze zinsnede, die mij tot de jagt op het grafschrift van ludolf van ceulen voerde: reeds boven in § 2 zagen wij, tot welke uitkomsten de gelukkige vondst van dit grafschrift nog bovendien voerde. Het mag eenigzins vreemd schijnen, dat deze 34 decimalen nergens voorkomen in van ceulens werken, noch in de herdrukken of uitgaven door zijne weduwe, noch in de vertalingen en bewerkingen door w. snellius. Wat de eerste betreft, zagen wij reeds, dat adriana symons zeer zorgvuldig was in het bezorgen van de werken van haren echtgenoot, en die onveranderd in het licht gaf, zooals haar man ze had geschreven; zoodat bijv. in den tweeden druk van het boek ‘vanden Circkel’ in 1615, slechts de 20 decimalen van den eersten druk van 1596 voorkomen, hoewel reeds bij zijn dood in 1610 de 34 decimalen bekend waren. Wat de uitgaven door snellius be- | |
[pagina 152]
| |
treft, is de reden moeijelijker te gissen, omdat deze ang zoo zorgvuldig niet was, en hier en daar de aanteekeningen van van ceulen gebruikte: misschien was deze toen reeds bezig met zijn Cyclometricus, waarin hij evenzeer de 34 decimalen op eenigzins andere wijze afleidde: maar het is juist in dit werk, dat voornoemde aanteekening omtrent de grafsteen voorkomt. Het komt dus waarschijnlijk voor, dat van ceulen wel de 34 decimalen heeft achtergelaten, maar zonder de berekeningen, die daarbij behoorden. 14. Wij hebben boven gezien, dat van ceulen de cirkelquadratuur van simon van der eycke bestreed, en daardoor tot zijn eigene berekeningen schijnt gekomen te zijn. Hij bestreed echter evenzoo de cirkelquadratuur van josephus scaliger, die van veel lager wetenschappelijk gehalte was; maar het schijnt wel, dat hij tegen zulk een beroemd man niet in het publiek door gedrukte stukken, wilde opkomen. Wij zouden dus van deze geheele zaak niets weten, ware het niet, dat een even hoog persoon als scaliger, adriaan van romen (gewoonlijk bekend als adrianus romanus) zich dien wetenschappelijken twist had aangetrokken. Later hopen wij met dien man nader in kennis te komen: hier zij het genoeg aan te halen, wat romanus daaromtrent vermeldt in zijn werk, dat gewoonlijk ‘Apologia pro ArchimedeGa naar eind22) wordt genoemd. Voor de ‘Exercitationes Cyclicae’ geeft a. romanus een ‘Lectori Philomathi’ (bladz. 55-57); en daarin verhaalt hij hoe ludolph van ceulen binnen de twaalf eerste dagen na het in het licht verschijnen van scaliger's ‘Cyclometrica Elementa’ [die later ter sprake zullen komen] aan den schrijver de fouten mededeelde, die hij begaan had; met de bede om de exemplaren van dit werk iu te trekken, na hij nog tijd en gelegenheid had, om zijne eer te redden; hoe scaliger den ‘pugil’ (schermmeester) had uitgelachen, dat deze in zulk eenen korten tijd den arbeid zoude kunnen verbeteren van iemand, als hij zelf (scaliger) was; hoe van ceulen sedert nog twee of driemaal daarop was teruggekomen, doch te vergeefs; hoe hij zelf (romanus) zich toen de zaak had aangetrokken, doch op vrij wat hooger toon; dan ook dit had niet geholpen. Romanus toch schrijft daarover. | |
[pagina 153]
| |
‘Opus Cyclometricum Scaligeri vix ex- || cusum fuit, quam-primum id in manus adsumpsit Excellentissimus nostri aeui Mathematicus ludolfvs van collen to- || tum euoluit, & examinavit. Errores praecipuos annotavit, atque per viros tum doctos, tum Scaligero familiares ei obtulit, simul || eum adhortatus, vt anteqvam opus in manus aliorum veniret, supprimeretur, sicque & non alia ratione honori eius cautum || fore. Risit virum doctissimum Scaliger, non fore cuiusuis etiam doctissimi Mathematici, longúmque tempus ea in re impen- || dentis, sua scripta examinare, imò vel intelligere asseruit vnde parui faciendum iudicium Pugilis alicuius (sic namque Ludol- || fvm Mathematici nomen dedignatus vocabat) qui, quotidianis suis occupationibus detentus, decem aut duodecim diebus || (tot enim insumpserat Ludolfus) ea examinare non potuit, ideòque velle se ait, vt Ludolfus censuram suam in lucem ederet. || Licet id responsi accepisset Ludolfus, non destitit tamen iterum bis terve hominem, vt honori suo consularet, admonere. Sed || frustrà. Posteà cum & opus ipsum per me esset examinatum, iudicium amicis illud a me petentibus aperui modestissimè, & || quidem non definiendo errores singulos, sed confusè plurimos in opere contineri errores, ideòque ei fidendum non esse, admo- || nui. Idem deinqve aperui Francisco Raphalengio viro tum doctissimo, tum humanissimo, id ab eo petens vt iudicium meum || Scaligero communicaret. Egi autem satis vehementer, sperans vt si blandae admonitioni Ludolfi non acquiesceret, nostra ve- || hementiori accepta, maturius de rebus suis deliberare inciperet.’ Romanus laat daarop een brief volgen, dien scaliger zelf hem als antwoord toezond, met de opmerking. ‘Sed & ego frustrà laboraui, in erroribus namque suis perseue- || rauit, atque hasce beneuolentia plenas ad me misit.’ 15. Nog verdient hier vermelding eene bestrijding, die hier slechts als ter loops voorkomt, van eene der vele benaderingen van de verhouding tusschen den cirkelomtrek en zijne middellijn door den kardinaal nicolas de cusa (ook wel cusanus) gegeven. Men vindt die bestrijding in de ‘Arithmetische en Geometrische Fondamenten’ van Noot (17) op bladz. 143 en bladz. 164, No. 11; en in de ‘Fundamenta Arithmetica et Geome- | |
[pagina 154]
| |
trica’ van Noot (19) op bladz. 119 en 143, 144. Het geldt hier de volgende benadering √ 972/98 7/16 = 3.1423. Zij verschilt van de meer bekende benadering 1562/497 = 3.14285, waarover vrij uitvoerig wordt gesproken in het werk ‘de Tri angulis’Ga naar eind23) van regiomontanus: deze wijdt toch daaraan een geheel toevoegsel van het genoemde werk. Bij van ceulen komt de bestrijding eerder voor als eene toepassing van de uitkomsten, die hij reeds verkregen had bij de berekeningen, die hij zich had voorgesteld. Deze onderscheidene benaderingen van den kardinaal de cusa worden niet altijd genoeg uit elkander gehouden: wij ontmoetten ze reeds in het No. VII der Bouwstoffen. 16. Volgens al het voorgaande is het dus gansch niet ten onrechte, dat de naam van ludolph van ceulen verbonden is geworden aan onze verhouding van den omtrek tot de middellijn des cirkels. Vooral zijn het de Duitschers die dit getal π ‘die Ludolfische Zahl’ noemen. Men is langen tijd bij deze 35 decimalen blijven staan: en voor het gewone gebruik zijn deze dan ook meer dan genoeg. Eerst later bij de ontwikkeling van de theorie der reeksen zijn er geweest, die datzelfde getal π tot in 500 en meer decimalen berekend hebben, door middel van sterk convergeerende reeksen, en dus langs geheel anderen weg. Dat echter van ceulen zich niet alleen door deze berekeningen verdienstelijk heeft gemaakt, zagen we reeds boven in § 7, waar sprake was van hetgeen hij gedaan heeft voor de berekening van interest en van disconteering van custingh-brieven. Bovendien ook hebben zijne ‘Hondert konstighe Vragen’ eenigen naam gemaakt. Er moet daarvan eene vertaling bestaan onder den titel van ‘Zetemata’ in Duitschland uitgegeven: deze is mij echter nimmer onder de oogen gekomen. | |
[pagina 155]
| |
17. Van deze ‘hondert constighe Vraghen’ voeren de dertig laatste slechts tot de oplossing van hoogere-machtsvergelijkingen: de zeventig eerste zijn opgelost door laurens praalder in zijne ‘Verzameling’ van 1777Ga naar eind24), waarvan een tweede druk bestaat onder den titel ‘Ludolf van Keulen's Mathematische Voorstellen’ in 1790Ga naar eind25). Deze laurens praalder onderwees de wiskundige wetenschappen te Rotterdam in 1753, en gaf toen in het licht zijne ‘Gronden der Wiskonst’Ga naar eind26) en het ‘Verhael van 't gepasseerde, beneffens d'Examen die gehouden is ter gelegentheit der beroepinge van Adriaan Visser tot Stats Schoolmeester en Voor-zanger te Purmerende’Ga naar eind27). Hij bekleedde toen de betrekking van examinateur van de zee-officieren, bij het Ed. Mogend Colegie ter Admiraliteit op de Mare. Naderhand, in 1777, was hij Lector in de wiskunde aan de Fundatie van de Vrouwe van Renswoude te Utrecht: denkelijk leefde hij nog in 1790 bij de uitgave van het werk, aangehaald in Noot (25). | |
Naschrift.Uit een brief van e. catalan aan den Prins balthasar boncompagniGa naar eind28) met eenige noten van de hand des laatsten, volgen nog een paar opmerkingen over den grafsteen van ludolf van ceulen. Vooreerst vindt men daar een brief van joseph la kanal, geboren te Serres den l4den Juli 1762, en overleden te Parijs den 14den Februari 1845, die gedurende de Fransche Revolutie groote diensten heeft bewezen aan de wetenschap, hare beoefenaars en hare verzamelingen, en ook heeft medegewerkt aan de oprichting van het Institut de France. Deze schrijft, den 17den November 1840. ‘J'ai vu à Leyde sur une tombe 36 chiffres qui forment une | |
[pagina 156]
| |
sorte d'énigme dont le mot est peu connu, même dans le pays. Van ceullen, mathématicien, travailla beaucoup pour déterminer le rapport du cercle à la circonférence: il exprima ce rapport en 36 chiffres;.... ce travail est, sans doute étonnant; car il fallut, qu'il fît des extractions jusqu'à ce qu'il trouvât dans la circonférence du cercle, le nombre des chiffres rapporté: c'est pour conserver la mémoire de cet homme laborieux, que ces chiffres ont été gravés sur sa tombe.’ Hieruit zoude volgen, dat die grafsteen nog bestond in deze eeuw: maar uit hetzelfde stukje blijkt verder, dat alle nader onderzoek vruchteloos is geweest. |
|